Original entry on oeis.org
1, 7, 941, 597571, 1077304324, 4250548204220, 31362344061243731, 389533784331698799757, 7553909607396308839307729, 216153962578005976317428630031, 8734715288242477329577387114158361, 481264969283514820342197141086713669943, 35132745658635258962977017094392007388046256, 3317919567828983194629673950155604531470409170896
Offset: 0
-
/* A304394 formula: [x^n] exp( n^4*x ) * (1 - x*A(x)) = 0 */
{A304394(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^4 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0, 25, print1( A304394(n)/(n+1)^4, ", "))
Original entry on oeis.org
1, 4, 45, 816, 20225, 632700, 23836540, 1048592640, 52696514169, 2976295383100, 186548057815801, 12845016620629488, 963644465255618276, 78224633235142116240, 6830914919397129328500, 638477522900795994967040, 63599377775480137499907561, 6725771848938288950491594140
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + 2976295383100*x^9 + ...
From _Petros Hadjicostas_, Mar 10 2021: (Start)
We illustrate the above formula for a(n) with the compositions of n + 1 for n = 2.
The compositions of n + 1 = 3 are 3, 1 + 2, 2 + 1, and 1 + 1 + 1. Thus the above sum has four terms with (r = 1, s_1 = 3), (r = 2, s_1 = 1, s_2 = 2), (r = 2, s_1 = 2, s_2 = 1), and (r = 3, s_1 = s_2 = s_3 = 1).
The value of the denominator Product_{j=1..r} s_j! for these four terms is 6, 2, 2, and 1, respectively.
The value of the numerator Product_{j=1..r} (Sum_{i=1..j} s_i)^(2*s_j) for these four terms is 729, 81, 144, and 36.
Thus a(2) = 729/6 - 81/2 - 144/2 + 36/1 = 45. (End)
-
-- using program for A107667
a107668 = map head a where a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]] -- John Tromp, Oct 21 2024
-
-- low memory version
a107668 n = (foldl' (\r i->sum r`seq`listArray(0,n)(0:[if i+1<2*j then 0 else r!j*(n+2-j)+r!(j-1)|j<-[1..n]])) (listArray(0,n)(0:repeat 1)) [1..2*n])!n -- John Tromp, Oct 15 2024
-
{a(n)=local(A);if(n==0,n+1,A=(n+1)*x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(n+1-prod(i=0,k,1+(i-n-1)*x))); polcoeff(A,n))}
for(n=0,30, print1(a(n),", "))
-
/* From formula: [x^n] exp( n^2*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^2 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
-
/* From Recurrence: */
{a(n) = if(n==0,1, (n+1)^(2*n+2)/(n+1)! - sum(k=1,n, (n+1)^(2*k)/k! * a(n-k) ))}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
A304324
O.g.f. A(x) satisfies: [x^n] exp( n^4 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, 75312181798660695788, 1595682359653020033714019, 49564410138113345565513815041, 2161639124039437373346491749452440, 127889301139607880711208251726358504898, 9979766671875039854419652569806336108694074
Offset: 0
O.g.f.: A(x) = 1 + x + 113*x^2 + 76446*x^3 + 153143499*x^4 + 673638499100*x^5 + 5510097691767062*x^6 + 75312181798660695788*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^4*x) / A(x) begins:
n=0: [1, -1, -224, -457326, -3671476224, -80797824300000, ...];
n=1: [1, 0, -225, -458000, -3673306875, -80816186256624, ...];
n=2: [1, 15, 0, -464750, -3701040000, -81092721606624, ...];
n=3: [1, 80, 6175, 0, -3787546875, -82312696206624, ...];
n=4: [1, 255, 64800, 15951250, 0, -84756571206624, ...];
n=5: [1, 624, 389151, 242091424, 146271536901, 0, ...];
n=6: [1, 1295, 1676800, 2170415250, 2804103120000, 3524906587193376, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^4*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304314:
A'(x)/A(x) = 1 + 225*x + 229000*x^2 + 612243125*x^3 + 3367384031526*x^4 + 33056423981177346*x^5 + 527146092112494861420*x^6 + ... + A304314(n)*x^n + ...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304394:
B(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ... + A304394(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^4 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
Original entry on oeis.org
1, 24, 2268, 461056, 160977375, 85624508376, 64363893844726, 64928246784463872, 84623205378726331245, 138408056280920732755000, 277597038523589348539241112, 670011760601512512626484887040
Offset: 0
O.g.f.: A(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + 64928246784463872*x^7 + ...
-
{a(n)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));(P^-1*D^2*P)[n+1,1]}
for(n=0,20, print1(a(n),", "))
-
/* From formula: [x^n] exp( n^3*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^3 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0, 25, print1( a(n), ", ")) \\ Paul D. Hanna, May 12 2018
-
/* From Recurrence: */
{a(n) = if(n==0,1, (n+1)^(3*n+3)/(n+1)! - sum(k=1,n, (n+1)^(3*k)/k! * a(n-k) ))}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
A304395
O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) * (1 - x*A(x)) = 0 for n > 0.
Original entry on oeis.org
1, 480, 2245320, 43083161600, 2331513459843750, 287128730182879382976, 69929145078323834449039740, 30496052356323314014140611297280, 22113924320024426907851753695581691875, 25177421842925471123473548283955430812500000, 42994775028354266041451477298870703788676694998956, 106089234738948935762581435147478647028049918327743508480
Offset: 0
O.g.f.: A(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + 69929145078323834449039740*x^6 + ...
-
/* From formula: [x^n] exp( n^5*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^5 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0, 20, print1( a(n), ", "))
A342202
T(n,k) = V(n,k)/k!, where V(n,k) = k^(n*k) - Sum_{t=1..k-1} binomial(k,t)*k^(n*(k-t))*V(n,t) for n, k >= 1; square array T read by upwards antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 24, 45, 0, 1, 112, 2268, 816, 0, 1, 480, 76221, 461056, 20225, 0, 1, 1984, 2245320, 152978176, 160977375, 632700, 0, 1, 8064, 62858025, 43083161600, 673315202500, 85624508376, 23836540, 0, 1, 32512, 1723364748, 11442561314816, 2331513459843750, 5508710472669120, 64363893844726, 1048592640, 0
Offset: 1
Square array T(n,k) (n, k >= 1) begins:
1, 0, 0, 0, 0, ...
1, 4, 45, 816, 20225, ...
1, 24, 2268, 461056, 160977375, ...
1, 112, 76221, 152978176, 673315202500, ...
1, 480, 2245320, 43083161600, 2331513459843750, ...
1, 1984, 62858025, 11442561314816, 7570813415735296875, ...
...
- Michael A. Harrison, A census of finite automata, Canadian Journal of Mathematics, 17 (1965), 100-113.
- Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
- Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
- Michel Marcus, PARI program that implements the formula for T(n,k) that involves compositions of k, 2021.
- Robert W. Robinson, Counting strongly connected finite automata, in: Graph Theory with Applications to Graph Theory and Computer Science, Wiley, 1985, pp. 671-685.
-
/* The recurrence for V(n,k) is due to Valery A. Liskovets. See his 1971 paper. A second program that implements the formula above involving the compositions of k appears in the links and was written by Michel Marcus. */
V(n,k) = k^(n*k) - sum(t=1, k-1, binomial(k, t)*k^(n*(k-t))*V(n,t));
T(n,k) = V(n,k)/k!
Showing 1-6 of 6 results.
Comments