cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107708 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).

Original entry on oeis.org

1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, 193536864, 2254630788, 26635735440, 318350663748, 3842488208997, 46770206742342, 573435609537600, 7075551692662875, 87794803094586336, 1094807464312435344
Offset: 0

Views

Author

Emeric Deutsch, Jun 10 2005

Keywords

Examples

			a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
  • Mathematica
    Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ G. C. Greubel, Mar 16 2017

Formula

a(n) = (1/n)*Sum(3^j*binomial(n, j)*binomial(n+j, 2n+1-j), j=ceiling((n+1)/2)..n) for n >= 1; a(0)=1.
G.f. = (2/3)w*sin((1/3)*arcsin((36-7z)/2/(3-2z)/w))-1/3, where w=sqrt((3-2z)/z).
Recurrence: 2*n*(2*n+1)*(17*n-25)*a(n) = 4*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-1) - 12*(n-2)*(34*n^2 - 67*n + 21)*a(n-2) + 3*(n-3)*(n-2)*(17*n - 8)*a(n-3). - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (1/204)*sqrt(102)*sqrt((134963 + 21573*sqrt(17))^(1/3) * ((134963 + 21573*sqrt(17))^(2/3) + 2176 + 68*(134963 + 21573*sqrt(17))^(1/3))) / ((134963 + 21573*sqrt(17))^(1/3)*sqrt(Pi)) * 6^(-n) * ((19009 + 153*sqrt(17))^(2/3) + 712 + 28*(19009 + 153*sqrt(17))^(1/3))^n * (19009 + 153*sqrt(17))^(-n/3)*(1/n)^(3/2). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 8*n*(2*n+1)*a(n) +2*(-106*n^2+97*n-18)*a(n-1) +36*(-2*n^2+12*n-15)*a(n-2) +12*(5*n-14)*(n-3)*a(n-3) -9*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x) + A(x)^2). - Seiichi Manyama, Apr 01 2024