A107742 G.f.: Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).
1, 1, 2, 4, 6, 10, 17, 25, 38, 59, 86, 125, 184, 260, 369, 524, 726, 1005, 1391, 1894, 2576, 3493, 4687, 6272, 8373, 11090, 14647, 19294, 25265, 32991, 42974, 55705, 72025, 92895, 119349, 152965, 195592, 249280, 316991, 402215, 508932, 642598, 809739, 1017850, 1276959, 1599015, 1997943, 2491874, 3102477, 3855165, 4782408, 5922954
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1+x^(i*j)), {i, 1, nmax}, {j, 1, nmax/i}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *) nmax = 50; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *) nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 28 2018 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@chQ/@#&]],{n,0,5}] (* Gus Wiseman, Sep 13 2022 *)
-
PARI
a(n)=polcoeff(prod(k=1,n,prod(j=1,n\k,1+x^(j*k)+x*O(x^n))),n) /* Paul D. Hanna */
-
PARI
N=66; x='x+O('x^N); gf=1/prod(j=0,N, eta(x^(2*j+1))); gf=prod(j=1,N,(1+x^j)^numdiv(j)); Vec(gf) /* Joerg Arndt, May 03 2008 */
-
PARI
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^(2*m)+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
Formula
Euler transform of A001227.
Weigh transform of A000005.
G.f. satisfies: log(A(x)) = Sum_{n>=1} A109386(n)/n*x^n, where A109386(n) = Sum_{d|n} d*Sum_{m|d} (m mod 2). - Paul D. Hanna, Jun 26 2005
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^(2n)) /n ). - Paul D. Hanna, Mar 28 2009
G.f.: Product_{n>=1} Q(x^n) where Q(x) is the g.f. of A000009. - Joerg Arndt, Feb 27 2014
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 04 2017
Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/6). - Vaclav Kotesovec, Aug 29 2018
Extensions
More terms from Paul D. Hanna, Jun 26 2005
Comments