A107778 a(1)=7, a(n) = smallest integer not previously used which contains a digit from a(n-1).
7, 17, 1, 10, 0, 20, 2, 12, 11, 13, 3, 23, 21, 14, 4, 24, 22, 25, 5, 15, 16, 6, 26, 27, 28, 8, 18, 19, 9, 29, 32, 30, 31, 33, 34, 35, 36, 37, 38, 39, 43, 40, 41, 42, 44, 45, 46, 47, 48, 49, 54, 50, 51, 52, 53, 55, 56, 57, 58, 59, 65, 60, 61, 62, 63, 64, 66, 67, 68, 69, 76, 70
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
Agenda:= [$0..6,$8..100]: A[1]:= 7: S:= {7}: for i from 2 do found:= false; for j from 1 to nops(Agenda) do r:= Agenda[j]; Sr:= convert(convert(r,base,10),set); if Sr intersect S <> {} then A[i]:= r; Agenda:= subsop(j=NULL,Agenda); S:= Sr; found:= true; break fi od; if not found then break fi; od: seq(A[n],n=1..i-1); # Robert Israel, Jul 08 2019
-
Mathematica
f[l_] := Block[{c = 0}, While[ MemberQ[l, c] || Intersection @@ IntegerDigits /@{Last[l], c}=={}, c++ ];Return[Append[l, c]]];Nest[f, {7}, 70] (* Ray Chandler, Jul 19 2005 *)
Formula
From Robert Israel, Jul 09 2019: (Start)
For n >= 29, it appears that a(n) = n-1 except:
a(i*10^k+j) = i*10^k+j-2 if i=1 and 2<=j<=10, or 2<=i<=8 and 2<=j<=i.
a(i*10^k+1) = i*10^k+i-1 for 2<=i<=8 or i=10.
(End)
Comments