A107846 Number of duplicate digits of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0
Offset: 0
Examples
a(11) = 1 because 11 has two total decimal digits but only one distinct digit (1) and 2-1=1. Similarly, a(3653135) = 7 (total digits) - 4 (distinct digits: 1,3,5,6) = 3 (There are three duplicate digits here, namely, 3, 3 and 5).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.List (sort, group) a107846 = length . concatMap tail . group . sort . show :: Integer -> Int -- Reinhard Zumkeller, Jul 09 2013
-
Mathematica
Table[Total[Select[DigitCount[n]-1,#>0&]],{n,0,120}] (* Harvey P. Dale, Jul 31 2013 *)
-
Python
def a(n): return len(s:=str(n)) - len(set(s)) print([a(n) for n in range(105)]) # Michael S. Branicky, Jan 09 2023
Comments