cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109303 Numbers k with at least one duplicate base-10 digit (A107846(k) > 0).

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166, 171, 177, 181, 188, 191, 199, 200, 202, 211, 212, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 232, 233, 242
Offset: 1

Views

Author

Rick L. Shepherd, Jun 24 2005

Keywords

Comments

Complement of A010784, numbers with distinct base-10 digits, so all numbers greater than 9876543210 (last term of A010784) are terms. a(263)=1001 is the first term not also a term of A044959; a(264)=1002 is the first term not also a term of A084050. The terms of A044959 greater than 9 are a subsequence. The terms of A084050 greater than 90 are a subsequence.
A178788(a(n)) = 0; A178787(a(n)) = A178787(a(n)-1); A043537(a(n)) < A109303(a(n)). - Reinhard Zumkeller, Jun 30 2010
A227362(a(n)) < a(n). - Reinhard Zumkeller, Jul 09 2013

Crossrefs

Cf. A010784 (numbers with distinct digits), A044959 (numbers with no two equally numerous digits), A084050 (numbers with a palindromic permutation of digits), A107846 (number of duplicate digits of n). Also see A062813, which gives the largest number in each base containing all distinct digits.

Programs

  • Haskell
    a109303 n = a109303_list !! (n-1)
    a109303_list = filter ((> 0) . a107846) [0..]
    -- Reinhard Zumkeller, Jul 09 2013
    
  • Mathematica
    Select[Range[300], Max[DigitCount[#]] > 1 &] (* Harvey P. Dale, Jan 14 2011 *)
  • Python
    def ok(n): s = str(n); return len(set(s)) < len(s)
    print([k for k in range(243) if ok(k)]) # Michael S. Branicky, Nov 22 2021

A010784 Numbers with distinct decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108, 109, 120
Offset: 1

Views

Author

Keywords

Comments

More than the usual number of terms are displayed in order to show the difference from some closely related sequences.
Also: a(1) = 0; a(n) = Min{x integer | x > a(n-1) and all digits to base 10 are distinct}.
This sequence is finite: a(8877691) = 9876543210 is the last term; a(8877690) = 9876543201. The largest gap between two consecutive terms before a(249999) = 2409653 is 104691, as a(175289) = 1098765, a(175290) = 1203456. - Reinhard Zumkeller, Jun 23 2001
Complement of A109303. - David Wasserman, May 21 2008
For the analogs in other bases b, search for "xenodromes." A001339(b-1) is the number of base b xenodromes for b >= 2. - Rick L. Shepherd, Feb 16 2013
A073531 gives the number of positive n-digit numbers in this sequence. Note that it does not count 0. - T. D. Noe, Jul 09 2013
Can be seen as irregular table whose n-th row holds the n-digit terms; length of row n is then A073531(n) = 9*9!/(10-n)! except for n = 1 where we have 10 terms, unless 0 is considered to belong to a row 0. - M. F. Hasler, Dec 10 2018

Crossrefs

Subsequence of A043096.
Cf. A109303, A029740 (odds), A029741 (evens), A029743 (primes), A001339.

Programs

  • Haskell
    a010784 n = a010784_list !! (n-1)
    a010784_list = filter ((== 1) . a178788) [1..]
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Mathematica
    Select[Range[0,100], Max[DigitCount[#]] == 1 &] (* Harvey P. Dale, Apr 04 2013 *)
  • PARI
    is(n)=my(v=vecsort(digits(n)));v==vecsort(v,,8) \\ Charles R Greathouse IV, Sep 17 2012
    
  • PARI
    select( is(n)=!n||#Set(digits(n))==logint(n,10)+1, [0..120]) \\ M. F. Hasler, Dec 10 2018
    
  • PARI
    apply( A010784_row(n,L=List(if(n>1,[])))={forvec(d=vector(n,i,[0,9]),forperm(d,p,p[1]&&listput(L,fromdigits(Vec(p)))),2);Set(L)}, [1..2]) \\ A010784_row(n) returns all terms with n digits. - M. F. Hasler, Dec 10 2018
    
  • Python
    A010784_list = [n for n in range(10**6) if len(set(str(n))) == len(str(n))] # Chai Wah Wu, Oct 13 2019
    
  • Python
    # alternate for generating full sequence
    from itertools import permutations
    afull = [0] + [int("".join(p)) for d in range(1, 11) for p in permutations("0123456789", d) if p[0] != "0"]
    print(afull[:100]) # Michael S. Branicky, Aug 04 2022
    
  • Scala
    def hasDistinctDigits(n: Int): Boolean = {
      val numerStr = n.toString
      val digitSet = numerStr.split("").toSet
      numerStr.length == digitSet.size
    }
    (0 to 99).filter(hasDistinctDigits) // Alonso del Arte, Jan 09 2020

Formula

A178788(a(n)) = 1; A178787(a(n)) = n; A043537(a(n)) = A055642(a(n)). - Reinhard Zumkeller, Jun 30 2010
A107846(a(n)) = 0. - Reinhard Zumkeller, Jul 09 2013

Extensions

Offset changed to 1 and first comment adjusted by Reinhard Zumkeller, Jun 14 2010
Showing 1-2 of 2 results.