Original entry on oeis.org
0, 1, 4, 6, 18, 31, 82, 132, 348, 565, 1480, 2394, 6270, 10147, 26566, 42984, 112536, 182089, 476716, 771342, 2019402, 3267463, 8554330, 13841196, 36236725, 58632253, 153501232, 248370211, 650241655
Offset: 1
a(3)=floor(s*r*s)-floor(s*floor(r*floor(s))), where
r=(1+sqrt(5))/2 and s=r+1.
A328696
Rectangular array R read by descending antidiagonals: apply x -> (x+1)/2 to each odd term of the Wythoff array (A035513), and delete all others.
Original entry on oeis.org
1, 2, 4, 3, 6, 5, 7, 15, 8, 12, 11, 24, 20, 19, 9, 28, 62, 32, 49, 23, 10, 45, 100, 83, 79, 37, 16, 13, 117, 261, 134, 206, 96, 41, 21, 14, 189, 422, 350, 333, 155, 66, 54, 36, 25, 494, 1104, 566, 871, 405, 172, 87, 58, 40, 17, 799, 1786, 1481, 1409, 655
Offset: 1
Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,2,3,7,11,...) = A107857 (essentially).
_______________
Northwest corner of R:
1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799
4, 6, 15, 24, 62, 100, 261, 422, 1104, 1786, 4675
5, 8, 20, 32, 83, 134, 350, 566, 1481, 2396, 6272
12, 19, 49, 79, 206, 333, 871, 1409, 3688, 5967, 15621
9, 23, 37, 96, 155, 405, 655, 1714, 2773, 7259, 11745
10, 16, 41, 66, 172, 278, 727, 1176, 3078, 4980, 13037
13, 21, 54, 87, 227, 367, 960, 1553, 4065, 6577, 17218
-
w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten;
q[n_, k_] := If[Mod[w[n, k], 2] == 1, (1 + w[n, k])/2, 0];
t[n_] := Union[Table[q[n, k], {k, 1, 50}]];
u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]]
s = Select[Range[40], ! u[#] == {} &]; u1[n_] := u[s[[n]]];
Column[Table[u1[n], {n, 1, 10}]] (* A328696 array *)
v[n_, k_] := u1[n][[k]];
Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328696 sequence *)
A107858
a(n) = b(k), where b(k) = Fibonacci(n-1) and k = floor( n*(1+sqrt(5))/2 ).
Original entry on oeis.org
1, 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799, 2091, 3383, 8856, 14329, 37513, 60697, 158906, 257115, 673135, 1089155, 2851444, 4613733, 12078909, 19544085, 51167078, 82790071, 216747219, 350704367, 918155952, 1485607537, 3889371025
Offset: 1
-
F[1] = 0; F[2] = 1; F[n__] := F[n] = F[n - 1] + F[n - 2]
Table[F[ Floor[(Sqrt[5] + 1)*n/2]], {n, 1, 50}] (* F[n] are the Fibonacci numbers, A000045, with offset 1 *)
A182691
Composite Beatty sequence of sqrt(2).
Original entry on oeis.org
3, 4, 13, 18, 61, 86, 293, 414, 1413, 1998, 6821, 9646, 32933, 46574, 159013, 224878, 767781, 1085806, 3707173, 5242734, 17899813, 25314158, 86427941, 122227566, 417311013, 590166894, 2014955813, 2849577838, 9729067301
Offset: 1
a(1)=floor(2+sqrt(2))=3, a(2)=floor(r*a(1))=4.
-
Digits := 16 ;
A182691 := proc(n) option remember; local r,s ; r := sqrt(2) ; s := 2+r ; if n = 1 then floor(s) ; elif type(n,'odd') then floor(s*procname(n-1)) ; else floor(r*procname(n-1)) ; end if; end proc:
seq(A182691(n),n=1..30) ;
-
a[1]:= 3; a[n_]:= If[OddQ[n], Floor[(2+Sqrt[2])*a[n-1]], Floor[Sqrt[2]*a[n-1]]]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Sep 29 2018 *)
A182692
Composite Beatty sequence of sqrt(3).
Original entry on oeis.org
2, 3, 7, 12, 28, 48, 113, 195, 461, 798, 1888, 3270, 7736, 13399, 31702, 54909, 129916, 225021, 532405, 922152, 2181835, 3779049, 8941325, 15486829, 36642230, 63466204, 150162650, 260089339, 615377983, 1065865932
Offset: 1
Showing 1-5 of 5 results.
Comments