A107862 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2 - k*(k-1)/2 + n-k, n-k).
1, 1, 1, 3, 2, 1, 20, 10, 3, 1, 210, 84, 21, 4, 1, 3003, 1001, 220, 36, 5, 1, 54264, 15504, 3060, 455, 55, 6, 1, 1184040, 296010, 53130, 7315, 816, 78, 7, 1, 30260340, 6724520, 1107568, 142506, 14950, 1330, 105, 8, 1, 886163135, 177232627, 26978328, 3262623, 324632, 27405, 2024, 136, 9, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 2, 1; 20, 10, 3, 1; 210, 84, 21, 4, 1; 3003, 1001, 220, 36, 5, 1; 54264, 15504, 3060, 455, 55, 6, 1; 1184040, 296010, 53130, 7315, 816, 78, 7, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[Binomial(Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
-
Mathematica
T[n_,k_]:= Binomial[(n-k)*(n+k+1)/2, n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 19 2022 *)
-
PARI
T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2+n-k,n-k)
-
Sage
flatten([[binomial( (n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022
Formula
T(n,k) = binomial( (n-k)*(n+k+1)/2, n-k). - G. C. Greubel, Feb 19 2022
Comments