cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A107884 Matrix cube of triangle A107876; equals the product of triangular matrices: A107876^3 = A107862^-1*A107873.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 16, 9, 3, 1, 63, 37, 12, 3, 1, 351, 210, 67, 15, 3, 1, 2609, 1575, 498, 106, 18, 3, 1, 24636, 14943, 4701, 975, 154, 21, 3, 1, 284631, 173109, 54298, 11100, 1689, 211, 24, 3, 1, 3909926, 2381814, 745734, 151148, 22518, 2688, 277, 27, 3, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Column 0 is A107885.
Column 1 is A107886.
Column 2 equals A107887.
Column 3 equals SHIFT_LEFT(A107878), where A107878 is column 2 of A107876.
Column 4 equals A107888.

Examples

			G.f. for column 0:
1 = T(0,0)*(1-x)^3 + T(1,0)*x*(1-x)^3 + T(2,0)*x^2*(1-x)^4 + T(3,0)*x^3*(1-x)^6 + T(4,0)*x^4*(1-x)^9 + T(5,0)*x^5*(1-x)^13 + ...
  = 1*(1-x)^3 + 3*x*(1-x)^3 + 6*x^2*(1-x)^4 + 16*x^3*(1-x)^6 + 63*x^4*(1-x)^9 + 351*x^5*(1-x)^13 + ...
G.f. for column 1:
1 = T(1,1)*(1-x)^3 + T(2,1)*x*(1-x)^4 + T(3,1)*x^2*(1-x)^6 + T(4,1)*x^3*(1-x)^9 + T(5,1)*x^4*(1-x)^13 + T(6,1)*x^5*(1-x)^18 + ...
  = 1*(1-x)^3 + 3*x*(1-x)^4 + 9*x^2*(1-x)^6 + 37*x^3*(1-x)^9 + 210*x^4*(1-x)^13 + 1575*x^5*(1-x)^18 + ...
Triangle begins:
       1;
       3,      1;
       6,      3,     1;
      16,      9,     3,     1;
      63,     37,    12,     3,    1;
     351,    210,    67,    15,    3,   1;
    2609,   1575,   498,   106,   18,   3,  1;
   24636,  14943,  4701,   975,  154,  21,  3, 1;
  284631, 173109, 54298, 11100, 1689, 211, 24, 3, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
    A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
    T = MatrixPower[Inverse[A107862].A107867, 3];
    Table[T[[n+1, k+1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(3+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}

Formula

G.f. for column k: 1 = Sum_{j>=0} T(k+j, k)*x^j*(1-x)^(3 + (k+j)*(k+j-1)/2 - k*(k-1)/2).

A107865 Matrix inverse of triangle A107862.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -7, -4, -3, 1, -77, -26, -9, -4, 1, -1145, -287, -67, -16, -5, 1, -21410, -4412, -798, -139, -25, -6, 1, -481683, -86004, -13029, -1830, -251, -36, -7, 1, -12655196, -2017658, -268368, -32191, -3667, -412, -49, -8, 1, -379998938, -55134458, -6630228, -705680, -69868, -6657, -631
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Matrix product with A107867 equals A107876.

Examples

			Triangle begins:
1;
-1,1;
-1,-2,1;
-7,-4,-3,1;
-77,-26,-9,-4,1;
-1145,-287,-67,-16,-5,1;
-21410,-4412,-798,-139,-25,-6,1;
-481683,-86004,-13029,-1830,-251,-36,-7,1; ...
		

Crossrefs

Cf. A107862, A107866 (column 0), A107867, A107870, A107876.

Programs

  • PARI
    {T(n,k)=(matrix(n+1,n+1,r,c,if(r>=c, binomial((r-1)*(r-2)/2-(c-1)*(c-2)/2+r-c,r-c)))^-1)[n+1,k+1]}

A107880 Matrix square of triangle A107876; equals matrix product of triangles: A107876^2 = A107862^-1*A107870 = A107867^-1*A107873.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 7, 5, 2, 1, 26, 19, 7, 2, 1, 141, 104, 37, 9, 2, 1, 1034, 766, 268, 61, 11, 2, 1, 9693, 7197, 2496, 550, 91, 13, 2, 1, 111522, 82910, 28612, 6195, 982, 127, 15, 2, 1, 1528112, 1136923, 391189, 83837, 12977, 1596, 169, 17, 2, 1, 24372513, 18141867, 6230646, 1326923, 202494, 24206, 2424, 217, 19, 2, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Column 0 is A107881. Column 1 is A107882. Column 3 equals A107883. Column 2 equals SHIFT_LEFT(A107877), where A107877 is column 1 of A107876.

Examples

			G.f. for column 0:
1 = T(0,0)*(1-x)^2 + T(1,0)*x*(1-x)^2 + T(2,0)*x^2*(1-x)^3 + T(3,0)*x^3*(1-x)^5 + T(4,0)*x^4*(1-x)^8 + T(5,0)*x^5*(1-x)^12 +...
= 1*(1-x)^2 + 2*x*(1-x)^2 + 3*x^2*(1-x)^3 + 7*x^3*(1-x)^5 + 26*x^4*(1-x)^8 + 141*x^5*(1-x)^12 +...
G.f. for column 1:
1 = T(1,1)*(1-x)^2 + T(2,1)*x*(1-x)^3 + T(3,1)*x^2*(1-x)^5 + T(4,1)*x^3*(1-x)^8 + T(5,1)*x^4*(1-x)^12 + T(6,1)*x^5*(1-x)^17 +...
= 1*(1-x)^2 + 2*x*(1-x)^3 + 5*x^2*(1-x)^5 + 19*x^3*(1-x)^8 + 104*x^4*(1-x)^12 + 766*x^5*(1-x)^17 +...
Triangle T begins:
  1;
  2,1;
  3,2,1;
  7,5,2,1;
  26,19,7,2,1;
  141,104,37,9,2,1;
  1034,766,268,61,11,2,1;
  9693,7197,2496,550,91,13,2,1;
  111522,82910,28612,6195,982,127,15,2,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
    A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
    T = MatrixPower[Inverse[A107862].A107867, 2];
    Table[T[[n+1, k+1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(2+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}

Formula

G.f. for column k: 1 = Sum_{j>=0} T(k+j, k)*x^j*(1-x)^(2+(k+j)*(k+j-1)/2-k*(k-1)/2).

A107863 Column 1 of triangle A107862; a(n) = binomial(n*(n+1)/2 + n, n).

Original entry on oeis.org

1, 2, 10, 84, 1001, 15504, 296010, 6724520, 177232627, 5317936260, 179013799328, 6681687099710, 273897571557780, 12233149001721760, 591315394579074378, 30756373941461374800, 1712879663609111933495, 101696990867999141755140
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n*(n+3)/2, n], {n,0,40}] (* G. C. Greubel, Feb 19 2022 *)
  • PARI
    a(n)=binomial(n*(n+1)/2+n,n)
    
  • Sage
    [binomial(n*(n+3)/2, n) for n in (0..40)] # G. C. Greubel, Feb 19 2022

Formula

a(n) = [x^(n*(n+1)/2)] 1/(1 - x)^(n+1). - Ilya Gutkovskiy, Oct 10 2017
From Peter Bala, Feb 23 2020: (Start)
Put b(n) = a(n-1). We have the congruences:
b(p) == 1 (mod p^3) for prime p >= 5 (uses Mestrovic, equation 35);
b(2*p) == 2*p (mod p^4) for prime p >= 5 (uses Mestrovic, equation 44 and the von Staudt-Clausen theorem).
Conjectural congruences:
b(3*p) == (81*p*2 - 1)/8 (mod p^3) for prime p >= 3;
3*b(4*p) == -4*p (mod p^3) for all prime p. Cf. A135860 and A135861. (End)

A101479 Triangular matrix T, read by rows, where row n equals row (n-1) of T^(n-1) after appending '1' for the main diagonal.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 19, 9, 3, 1, 1, 191, 70, 18, 4, 1, 1, 2646, 795, 170, 30, 5, 1, 1, 46737, 11961, 2220, 335, 45, 6, 1, 1, 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1, 25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1, 735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005, Jul 26 2006, May 27 2007

Keywords

Comments

Remarkably, T equals the product of these triangular matrices: T = A107867*A107862^-1 = A107870*A107867^-1 = A107873*A107870^-1; reversing the order of these products yields triangle A107876.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1;
25330125, 5051866, 758814, 92652, 9730, 924, 84, 8, 1, 1;
735180292, 132523155, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1; ...
Row 4 starts with row 3 of T^3 which begins:
1;
3, 1;
6, 3, 1;
19, 9, 3, 1; ...
row 5 starts with row 4 of T^4 which begins:
1;
4, 1;
10, 4, 1;
34, 14, 4, 1;
191, 70, 18, 4, 1; ...
An ALTERNATE GENERATING METHOD is illustrated as follows.
For row 4:
Start with a '1' and append 2 zeros,
take partial sums and append 1 zero,
take partial sums thrice more, resulting in:
1, 0, 0;
1, 1, 1, 0;
1, 2, 3, 3;
1, 3, 6, 9;
1, 4,10,19.
Final nonzero terms form row 4: [19,9,3,1,1].
For row 5:
Start with a '1' and append 3 zeros,
take partial sums and append 2 zeros,
take partial sums and append 1 zero,
take partial sums thrice more, resulting in:
1, 0, 0, 0;
1, 1, 1, 1, 0,  0;
1, 2, 3, 4, 4,  4,  0;
1, 3, 6,10,14, 18, 18;
1, 4,10,20,34, 52, 70;
1, 5,15,35,69,121,191;
where the final nonzero terms form row 5: [191,70,18,4,1,1].
Likewise, for row 6:
1, 0, 0, 0,  0;
1, 1, 1, 1,  1,  0,  0,  0;
1, 2, 3, 4,  5,  5,  5,  5,   0,   0;
1, 3, 6,10, 15, 20, 25, 30,  30,  30,   0;
1, 4,10,20, 35, 55, 80,110, 140, 170, 170;
1, 5,15,35, 70,125,205,315, 455, 625, 795;
1, 6,21,56,126,251,456,771,1226,1851,2646;
where the final nonzero terms form row 6: [2646,795,170,30,5,1,1].
Continuing in this way generates all rows of this triangle.
		

Crossrefs

Columns are A101481, A101482, A101483, row sums form A101484.
Cf. A107876 (dual triangle).

Programs

  • Maple
    b:= proc(n) option remember;
          Matrix(n, (i,j)-> T(i-1,j-1))^(n-1)
        end:
    T:= proc(n,k) option remember;
         `if`(n=k, 1, `if`(k>n, 0, b(n)[n,k+1]))
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 13 2020
  • Mathematica
    b[n_] := b[n] = MatrixPower[Table[T[i-1, j-1], {i, n}, {j, n}], n-1];
    T[n_, k_] := T[n, k] = If[n == k, 1, If[k > n, 0, b[n][[n, k+1]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
  • PARI
    {T(n,k) = my(A=Mat(1),B); for(m=1,n+1, B=matrix(m,m); for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1, B[i,j] = (A^(i-2))[i-1,j]);)); A=B); return(A[n+1,k+1])}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))
    
  • PARI
    {T(n,k) = my(A=vector(n+1),p); A[1]=1; for(j=1,n-k-1, p=(n-1)*(n-2)/2-(n-j-1)*(n-j-2)/2; A = Vec((Polrev(A)+x*O(x^p))/(1-x))); A = Vec((Polrev(A) +x*O(x^p)) / (1-x) ); A[p+1]}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))

A107876 Triangular matrix T, read by rows, that satisfies: [T^k](n,k) = T(n,k-1) for n>=k>0, or, equivalently, (column k of T^k) = SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 7, 7, 3, 1, 1, 37, 37, 15, 4, 1, 1, 268, 268, 106, 26, 5, 1, 1, 2496, 2496, 975, 230, 40, 6, 1, 1, 28612, 28612, 11100, 2565, 425, 57, 7, 1, 1, 391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1, 6230646, 6230646, 2401365, 544423
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, T equals the product of these triangular matrices: T = A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873; reversing the order of these products yields triangle A101479.
Column m of T^k is the number of subpartitions of the initial terms of the sequence (k-1)+n(m-1)+n(n-1)/2 (ignoring 0's above the diagonal). E.g., column 4 of T^3 is 1,3,15,106,975,.... The sequence above is 2,5,9,14,20,.... subp([]) = 1, subp([2]) = 3, subp([2,5]) = 15, subp([2,5,9]) = 106, etc. The matrix product of T^(k-1) * T computes the number of such subpartitions by looking at the first part index where the subpartition is maxed - for [2,5,9,14,20] the third term (9 maxed) has subp([1,4]) for the first two values (not maxed), times subp([5,11]) for the last two values (possibly maxed). - Franklin T. Adams-Watters, Jun 26 2006
T(n,k) is the number of Dyck paths whose sequence of ascent lengths is exactly k,k+1,...,n, for example the T(4,3) = 3 paths are UUUdUUUUd^6, UUUddUUUUd^5 and UUUdddUUUUd^4. - David Scambler, May 30 2012

Examples

			G.f. for column 1:
1 = T(1,1)*(1-x)^1 + T(2,1)*x*(1-x)^2 + T(3,1)*x^2*(1-x)^4 + T(4,1)*x^3*(1-x)^7 + T(5,1)*x^4*(1-x)^11 + T(6,1)*x^5*(1-x)^16 +...
= 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 +...
G.f. for column 2:
1 = T(2,2)*(1-x)^1 + T(3,2)*x*(1-x)^3 + T(4,2)*x^2*(1-x)^6 + T(5,2)*x^3*(1-x)^10 + T(6,2)*x^4*(1-x)^15 + T(7,2)*x^5*(1-x)^21 +...
= 1*(1-x)^1 + 1*x*(1-x)^3 + 3*x^2*(1-x)^6 + 15*x^3*(1-x)^10 + 106*x^4*(1-x)^15 + 975*x^5*(1-x)^21 +...
Triangle T begins:
       1;
       1,      1;
       1,      1,      1;
       2,      2,      1,     1;
       7,      7,      3,     1,    1;
      37,     37,     15,     4,    1,   1;
     268,    268,    106,    26,    5,   1,  1;
    2496,   2496,    975,   230,   40,   6,  1, 1;
   28612,  28612,  11100,  2565,  425,  57,  7, 1, 1;
  391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1; ...
where column 1 of T = SHIFT_LEFT(column 0 of T).
Matrix square T^2 begins:
     1;
     2,   1;
     3,   2,   1;
     7,   5,   2,  1;
    26,  19,   7,  2,  1;
   141, 104,  37,  9,  2, 1;
  1034, 766, 268, 61, 11, 2, 1; ...
Compare column 2 of T^2 with column 1 of T.
Matrix inverse begins:
   1;
  -1,    1;
   0,   -1,   1;
   0,   -1,  -1,   1;
   0,   -3,  -2,  -1,  1;
   0,  -15,  -9,  -3, -1,  1;
   0, -106, -61, -18, -4, -1, 1; ...
Compare column 1 of T^-1 with column 2 of T and
compare column 2 of T^-1 with column 3 of T^2.
		

Crossrefs

Cf. A107862, A107865, A107867, A107870, A107877 (column 1), A107878 (column 2), A107879 (column 3), A107880 (matrix square), A107884 (matrix cube), A107889 (matrix inverse).
Cf. A115728, A115729, A101479 (dual triangle).
T(2n,n) gives A300954.

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[nA107867 = Table[Binomial[If[nA107862].A107867;
    Table[t[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after first comment, fixed by Vaclav Kotesovec, Jun 13 2018 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))
    
  • PARI
    /* Print the Triangular Matrix to the Power p: */
    {T(n,k,p)=polcoeff(1- sum(j=0,n-k-1,T(j+k,k,p)*x^j*(1-x+x*O(x^n))^(j*(j-1)/2+j*k+p)),n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k,1),", ")); print(""))

Formula

G.f. for column k of T^m, the m-th matrix power of this triangle T:
(1) 1 = Sum_{j>=0} T(k+j, k) * x^j * (1-x)^(1+(k+j)*(k+j-1)/2-k*(k-1)/2) for m=1.
(2) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j*(1-x)^(m+(k+j)*(k+j-1)/2-k*(k-1)/2) for all m and k>=0.
(3) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j / C(x)^(m-j+(k+j)*(k+j-1)/2-k*(k-1)/2) where C(x)=2/(1+sqrt(1-4*x)) is g.f. for A000108 (Catalan numbers).
Matrix inverse of this triangle T satisfies:
(4) [T^-1](n,k) = -[T^k](n,k+1) for n>k>=0.

A107867 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2-k*(k-1)/2+n-k+1,n-k).

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 35, 15, 4, 1, 330, 120, 28, 5, 1, 4368, 1365, 286, 45, 6, 1, 74613, 20349, 3876, 560, 66, 7, 1, 1560780, 376740, 65780, 8855, 969, 91, 8, 1, 38608020, 8347680, 1344904, 169911, 17550, 1540, 120, 9, 1, 1101716330, 215553195, 32224114
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
1;
2,1;
6,3,1;
35,15,4,1;
330,120,28,5,1;
4368,1365,286,45,6,1;
74613,20349,3876,560,66,7,1;
1560780,376740,65780,8855,969,91,8,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+1,n-k)

A099121 Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2}.

Original entry on oeis.org

1, 3, 21, 220, 3060, 53130, 1107568, 26978328, 752538150, 23667689815, 828931106355, 32006008361808, 1350990969850340, 61902409203193230, 3060335715568296000, 162392216278033616560, 9206887338937200407418
Offset: 0

Views

Author

Sascha Kurz, Sep 28 2004

Keywords

Comments

This is the number of possible votes of n referees judging n dancers by a mark between 0 and 2, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 3-set. - Andrew Howroyd, Jan 17 2020

Crossrefs

Programs

  • PARI
    a(n)={binomial(binomial(n + 2, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020

Formula

a(n) = binomial( (n+1)*(n+2)/2 + n-1, n).
a(n) = binomial(binomial(n + 2, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 17 2020

A107870 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2-k*(k-1)/2+n-k+2, n-k).

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 56, 21, 5, 1, 495, 165, 36, 6, 1, 6188, 1820, 364, 55, 7, 1, 100947, 26334, 4845, 680, 78, 8, 1, 2035800, 475020, 80730, 10626, 1140, 105, 9, 1, 48903492, 10295472, 1623160, 201376, 20475, 1771, 136, 10, 1, 1362649145, 260932815
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
1;
3,1;
10,4,1;
56,21,5,1;
495,165,36,6,1;
6188,1820,364,55,7,1;
100947,26334,4845,680,78,8,1;
2035800,475020,80730,10626,1140,105,9,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+2,n-k)

A107873 Triangle, read by rows, where T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).

Original entry on oeis.org

1, 4, 1, 15, 5, 1, 84, 28, 6, 1, 715, 220, 45, 7, 1, 8568, 2380, 455, 66, 8, 1, 134596, 33649, 5985, 816, 91, 9, 1, 2629575, 593775, 98280, 12650, 1330, 120, 10, 1, 61523748, 12620256, 1947792, 237336, 23751, 2024, 153, 11, 1, 1677106640, 314457495, 45379620, 5245786, 501942, 40920, 2925, 190, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        4,      1;
       15,      5,     1;
       84,     28,     6,     1;
      715,    220,    45,     7,    1;
     8568,   2380,   455,    66,    8,   1;
   134596,  33649,  5985,   816,   91,   9,  1;
  2629575, 593775, 98280, 12650, 1330, 120, 10, 1; ...
		

Crossrefs

Programs

  • Magma
    [Binomial(3+Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Flatten[Table[Binomial[(n(n-1))/2-(k(k-1))/2+n-k+3,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+3,n-k)
    
  • Sage
    flatten([[binomial(3+(n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

From G. C. Greubel, Feb 19 2022: (Start)
T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).
T(n, 0) = A107874(n).
T(n, 1) = A107875(n). (End)
Showing 1-10 of 13 results. Next