cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107862 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2 - k*(k-1)/2 + n-k, n-k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 20, 10, 3, 1, 210, 84, 21, 4, 1, 3003, 1001, 220, 36, 5, 1, 54264, 15504, 3060, 455, 55, 6, 1, 1184040, 296010, 53130, 7315, 816, 78, 7, 1, 30260340, 6724520, 1107568, 142506, 14950, 1330, 105, 8, 1, 886163135, 177232627, 26978328, 3262623, 324632, 27405, 2024, 136, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        1,      1;
        3,      2,     1;
       20,     10,     3,    1;
      210,     84,    21,    4,   1;
     3003,   1001,   220,   36,   5,  1;
    54264,  15504,  3060,  455,  55,  6, 1;
  1184040, 296010, 53130, 7315, 816, 78, 7, 1; ...
		

Crossrefs

Cf. A014068 (column 0), A107863 (column 1), A099121 (column 2), A107865, A107867, A107870, A107876.

Programs

  • Magma
    [Binomial(Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    T[n_,k_]:= Binomial[(n-k)*(n+k+1)/2, n-k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 19 2022 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2+n-k,n-k)
    
  • Sage
    flatten([[binomial( (n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

T(n,k) = binomial( (n-k)*(n+k+1)/2, n-k). - G. C. Greubel, Feb 19 2022

A135861 a(n) = binomial(n*(n+1),n)/(n+1).

Original entry on oeis.org

1, 1, 5, 55, 969, 23751, 749398, 28989675, 1329890705, 70625252863, 4263421511271, 288417894029200, 21616536107173175, 1778197364075525550, 159297460456229992380, 15438280311293473537331, 1609484153977526457766689, 179612918129148904884024975
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Maple
    A135861:=n->binomial(n*(n+1),n)/(n+1); seq(A135861(n), n=0..15); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    Table[Binomial[n*(n + 1), n]/(n + 1), {n, 0, 15}]
  • PARI
    a(n)=binomial(n*(n+1),n)/(n+1)

Formula

a(n) = A135860(n)/(n+1).
a(n) = [x^(n^2)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017
a(p) == 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == 4*p + 1 ( mod p^4 ) for prime p >= 5 (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020
a(n) ~ exp(n + 1/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Oct 17 2020

A135860 a(n) = binomial(n*(n+1), n).

Original entry on oeis.org

1, 2, 15, 220, 4845, 142506, 5245786, 231917400, 11969016345, 706252528630, 46897636623981, 3461014728350400, 281014969393251275, 24894763097057357700, 2389461906843449885700, 247012484980695576597296, 27361230617617949782033713, 3233032526324680287912449550
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n*(n+1), n): n in [0..30]]; // G. C. Greubel, Feb 20 2022
    
  • Mathematica
    Table[Binomial[n^2 + n, n], {n, 0, 16}] (* Arkadiusz Wesolowski, Jul 18 2012 *)
    (* or *)
    Table[SeriesCoefficient[(1+x)^(n*(n+1)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • PARI
    a(n)=binomial(n*(n+1),n)
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k))
    for(n=0,15,print1(a(n),", "))
    
  • Sage
    [binomial(n*(n+1), n) for n in (0..30)] # G. C. Greubel, Feb 20 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k). - Paul D. Hanna, Nov 18 2015
a(n) is divisible by (n+1): a(n)/(n+1) = A135861(n).
a(n) is divisible by (n^2+1): a(n)/(n^2+1) = A135862(n).
a(n) = binomial(2*A000217(n),n). - Arkadiusz Wesolowski, Jul 18 2012
a(n) = [x^n] 1/(1 - x)^(n^2+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Feb 08 2019
a(p) == p + 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == (4*p + 1)*(2*p + 1) ( mod p^4 ) for all prime p. Apply Mestrovic, equation 37. - Peter Bala, Feb 27 2020
a(n) = ((n^2 + n)!)/((n^2)! * n!). - Peter Luschny, Feb 27 2020
a(n) = [x^n] (1 + x)^(n*(n+1)). - Vaclav Kotesovec, Aug 06 2025
Showing 1-3 of 3 results.