cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014068 a(n) = binomial(n*(n+1)/2, n).

Original entry on oeis.org

1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
Offset: 0

Views

Author

Keywords

Comments

Product of next n numbers divided by product of first n numbers. E.g., a(4) = (7*8*9*10)/(1*2*3*4)= 210. - Amarnath Murthy, Mar 22 2004
Also the number of labeled loop-graphs with n vertices and n edges. The covering case is A368597. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}
             {{1},{1,2}}  {{1},{2},{1,2}}
             {{2},{1,2}}  {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{1,3}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{2},{3},{2,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Diagonal of A084546.
Without loops we have A116508, covering A367863, unlabeled A006649.
Allowing edges of any positive size gives A136556, covering A054780.
The covering case is A368597.
The unlabeled version is A368598, covering A368599.
The connected case is A368951.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts loop-graphs, covering A322661.
A006129 counts covering simple graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Magma
    [Binomial(Binomial(n+1,2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Binomial[First[#],Last[#]]&/@With[{nn=20},Thread[{Accumulate[ Range[ 0,nn]], Range[ 0,nn]}]] (* Harvey P. Dale, May 27 2014 *)
  • Python
    from math import comb
    def A014068(n): return comb(comb(n+1,2),n) # Chai Wah Wu, Jul 14 2024
  • Sage
    [(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
    

Formula

For n >= 1, Product_{k=1..n} a(k) = A022915(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, a(n) = A022915(n)/A022915(n-1). - Gerald McGarvey, Jul 26 2004
a(n) = binomial(T(n+1), T(n)) where T(n) = the n-th triangular number. - Amarnath Murthy, Jul 14 2005
a(n) = binomial(binomial(n+2, n), n+1) for n >= -1. - Zerinvary Lajos, Nov 30 2009
From Peter Bala, Feb 27 2020: (Start)
a(p) == (p + 1)/2 ( mod p^3 ) for prime p >= 5 (apply Mestrovic, equation 37).
Conjectural: a(2*p) == p*(2*p + 1) ( mod p^4 ) for prime p >= 5. (End)
a(n) = A084546(n,n). - Gus Wiseman, Jan 25 2024
a(n) = [x^n] (1+x)^(n*(n+1)/2). - Vaclav Kotesovec, Aug 06 2025

A135861 a(n) = binomial(n*(n+1),n)/(n+1).

Original entry on oeis.org

1, 1, 5, 55, 969, 23751, 749398, 28989675, 1329890705, 70625252863, 4263421511271, 288417894029200, 21616536107173175, 1778197364075525550, 159297460456229992380, 15438280311293473537331, 1609484153977526457766689, 179612918129148904884024975
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Maple
    A135861:=n->binomial(n*(n+1),n)/(n+1); seq(A135861(n), n=0..15); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    Table[Binomial[n*(n + 1), n]/(n + 1), {n, 0, 15}]
  • PARI
    a(n)=binomial(n*(n+1),n)/(n+1)

Formula

a(n) = A135860(n)/(n+1).
a(n) = [x^(n^2)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017
a(p) == 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == 4*p + 1 ( mod p^4 ) for prime p >= 5 (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020
a(n) ~ exp(n + 1/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Oct 17 2020

A228832 Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Central coefficients are A201555(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Examples

			The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
		

Crossrefs

Cf. A228808 (row sums), A228833 (antidiagonal sums), A135860 (diagonal), A201555 (central terms).
Cf. A229052.
Cf. related triangles: A228904 (exp), A209330, A226234, A228836.

Programs

  • PARI
    {T(n, k)=binomial(n*k, k^2)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A135862 a(n) = binomial(n*(n+1),n)/(n^2+1).

Original entry on oeis.org

1, 1, 3, 22, 285, 5481, 141778, 4638348, 184138713, 8612835715, 464333035881, 28368973183200, 1938034271677595, 146439782923866810, 12129248258088578100, 1092975597259714940696, 106463932364272178140209, 11148388021809242372111895, 1248977393391271550436645787
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Comments

From Peter Bala, Dec 02 2015: (Start)
Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n/(n^2 - n + 1)). Cf. A143669.
See Armstrong et al. for combinatorial interpretations of these generalized Catalan number sequences. (End)

Crossrefs

Programs

  • Magma
    [Binomial(n*(n+1),n)/(n^2+1): n in [0..20]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    Table[Binomial[n (n + 1), n]/(n^2 + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    a(n)=binomial(n*(n+1),n)/(n^2+1)
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = local(A=1+x); for(i=1, n, A = exp( sum(k=1, n, A^(n*k)*x^k/k +x*O(x^n)))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    

Formula

a(n) = A135860(n)/(n^2+1).
a(n) = 1/(n^2 + n + 1)*binomial(n^2 + n + 1, n). - Peter Bala, Dec 02 2015
Ccongruences: a(p) == (1 + p - p^2 - p^3) ( mod p^4 ) for prime p >= 5 and a(2*p) == (1 + 6*p + 4*p^2) ( mod p^3 ) for all prime p (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020

A107863 Column 1 of triangle A107862; a(n) = binomial(n*(n+1)/2 + n, n).

Original entry on oeis.org

1, 2, 10, 84, 1001, 15504, 296010, 6724520, 177232627, 5317936260, 179013799328, 6681687099710, 273897571557780, 12233149001721760, 591315394579074378, 30756373941461374800, 1712879663609111933495, 101696990867999141755140
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n*(n+3)/2, n], {n,0,40}] (* G. C. Greubel, Feb 19 2022 *)
  • PARI
    a(n)=binomial(n*(n+1)/2+n,n)
    
  • Sage
    [binomial(n*(n+3)/2, n) for n in (0..40)] # G. C. Greubel, Feb 19 2022

Formula

a(n) = [x^(n*(n+1)/2)] 1/(1 - x)^(n+1). - Ilya Gutkovskiy, Oct 10 2017
From Peter Bala, Feb 23 2020: (Start)
Put b(n) = a(n-1). We have the congruences:
b(p) == 1 (mod p^3) for prime p >= 5 (uses Mestrovic, equation 35);
b(2*p) == 2*p (mod p^4) for prime p >= 5 (uses Mestrovic, equation 44 and the von Staudt-Clausen theorem).
Conjectural congruences:
b(3*p) == (81*p*2 - 1)/8 (mod p^3) for prime p >= 3;
3*b(4*p) == -4*p (mod p^3) for all prime p. Cf. A135860 and A135861. (End)

A272238 a(n) = Product_{k=0..n} (n^2+k)!.

Original entry on oeis.org

1, 2, 2073600, 25177856146146034974720000000, 14100949826093501607549529280892932893801777581548587107609477120000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Comments

The next term has 173 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(n^2+k)!, {k, 0, n}], {n, 0, 6}]
    Table[BarnesG[n^2 + n + 2]/BarnesG[n^2 + 1], {n, 0, 6}]

Formula

a(n) = ((n^2+n)!)^(n+1) / A272237(n).
a(n) ~ exp(11/24 + n/6 - n^2 - n^3) * n^((1+n)*(1 + n + 2*n^2)) * (2*Pi)^((n+1)/2).

A295763 G.f. satisfies: A(x) = Sum_{n>=0} binomial(n*(n+1),n)/(n+1) * x^n/A(x)^n.

Original entry on oeis.org

1, 1, 4, 42, 744, 18570, 596929, 23457763, 1089601420, 58424516424, 3553205095552, 241765128267597, 18202737707568180, 1502857964050898494, 135033771405912550765, 13119213786776385900734, 1370572549521961522812200, 153224265349198540163190599, 18253426026439076436840194131, 2308479498698233016622014842489
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 744*x^4 + 18570*x^5 + 596929*x^6 + 23457763*x^7 + 1089601420*x^8 + 58424516424*x^9 + 3553205095552*x^10 +...
such that
A(x) = 1 + x/A(x) + 5*(x/A(x))^2 + 55*(x/A(x))^3 + 969*(x/A(x))^4 + 23751*(x/A(x))^5 + 749398*(x/A(x))^6 +...+ binomial(n*(n+1),n)/(n+1)*(x/A(x))^n +...
The table of coefficients of x^k in A(x)^(n+1) begins:
  [1, 1, 4, 42, 744, 18570, 596929, 23457763, 1089601420, ...];
  [1, 2, 9, 92, 1588, 38964, 1238714, 48320440, 2233007214, ...];
  [1, 3, 15, 151, 2544, 61356, 1928659, 74668905, 3432698217, ...];
  [1, 4, 22, 220, 3625, 85936, 2670332, 102589280, 4691284160, ...];
  [1, 5, 30, 300, 4845, 112911, 3467585, 132173305, 6011511390, ...];
  [1, 6, 39, 392, 6219, 142506, 4324575, 163518732, 7396271082, ...];
  [1, 7, 49, 497, 7763, 174965, 5245786, 196729744, 8848607971, ...];
  [1, 8, 60, 616, 9494, 210552, 6236052, 231917400, 10371729633, ...];
  [1, 9, 72, 750, 11430, 249552, 7300581, 269200107, 11969016345, ...]; ...
in which the main diagonal begins:
  [1, 2, 15, 220, 4845, 142506, 5245786, ..., binomial(n*(n+1),n), ...],
thus [x^n] A(x)^(n+1) = [x^n] (1 + x)^(n*(n+1)) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = Sum[Binomial[n*(n+1), n]/(n+1)*x^n/A[x]^n, {n, 0, terms}] + O[x]^terms // Normal, terms];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 14 2018 *)
  • PARI
    {a(n) = my(A=[1]); for(m=1,n, A = concat(A,0); V = Vec( Ser(A)^(m+1) ); A[m+1] = (binomial(m*(m+1),m) - V[m+1])/(m+1);); A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

G.f. A(x) satisfies: [x^n] A(x)^(n+1) = binomial(n*(n+1),n) for n>=0.
a(n) ~ c * exp(n) * n^(n - 3/2), where c = exp(1/2 - exp(-2)) / sqrt(2*Pi) = 0.5744892944370457395619... - Vaclav Kotesovec, Oct 17 2020, updated Mar 18 2024

A306280 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n^2+k,k).

Original entry on oeis.org

1, 3, 26, 416, 9708, 297662, 11306572, 512307336, 26968496504, 1617489748394, 108885682104744, 8129721925098468, 666736347200187804, 59582961423951290184, 5762936296492591067968, 599807329803134064385488, 66843498592187788579795440
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n,k] * Binomial[n^2+k,k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 03 2019 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2+k, k))}

Formula

From Vaclav Kotesovec, Feb 08 2019: (Start)
a(n) ~ exp(1) * A135860(n).
a(n) ~ exp(n + 3/2) * n^(n - 1/2) / sqrt(2*Pi). (End)

A228509 a(n) = binomial(n^2+n+1,n) * (n+1) / (n^2+n+1) for n>=0.

Original entry on oeis.org

1, 2, 9, 88, 1425, 32886, 992446, 37106784, 1657248417, 86128357150, 5107663394691, 340427678198400, 25194445531808735, 2050156960934135340, 181938723871328671500, 17487609556155439051136, 1809886850192627028383553, 200670984392566362698014110, 23730570474434159458296269953
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 88*x^3 + 1425*x^4 + 32886*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[n^2+n+1,n](n+1))/(n^2+n+1),{n,0,20}] (* Harvey P. Dale, Oct 13 2015 *)
  • PARI
    {a(n)=binomial(n^2+n+1,n)*(n+1)/(n^2+n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (n+1)*A135862(n).
Showing 1-9 of 9 results.