cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A014068 a(n) = binomial(n*(n+1)/2, n).

Original entry on oeis.org

1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
Offset: 0

Views

Author

Keywords

Comments

Product of next n numbers divided by product of first n numbers. E.g., a(4) = (7*8*9*10)/(1*2*3*4)= 210. - Amarnath Murthy, Mar 22 2004
Also the number of labeled loop-graphs with n vertices and n edges. The covering case is A368597. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}
             {{1},{1,2}}  {{1},{2},{1,2}}
             {{2},{1,2}}  {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{1,3}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{2},{3},{2,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Diagonal of A084546.
Without loops we have A116508, covering A367863, unlabeled A006649.
Allowing edges of any positive size gives A136556, covering A054780.
The covering case is A368597.
The unlabeled version is A368598, covering A368599.
The connected case is A368951.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts loop-graphs, covering A322661.
A006129 counts covering simple graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Magma
    [Binomial(Binomial(n+1,2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Binomial[First[#],Last[#]]&/@With[{nn=20},Thread[{Accumulate[ Range[ 0,nn]], Range[ 0,nn]}]] (* Harvey P. Dale, May 27 2014 *)
  • Python
    from math import comb
    def A014068(n): return comb(comb(n+1,2),n) # Chai Wah Wu, Jul 14 2024
  • Sage
    [(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
    

Formula

For n >= 1, Product_{k=1..n} a(k) = A022915(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, a(n) = A022915(n)/A022915(n-1). - Gerald McGarvey, Jul 26 2004
a(n) = binomial(T(n+1), T(n)) where T(n) = the n-th triangular number. - Amarnath Murthy, Jul 14 2005
a(n) = binomial(binomial(n+2, n), n+1) for n >= -1. - Zerinvary Lajos, Nov 30 2009
From Peter Bala, Feb 27 2020: (Start)
a(p) == (p + 1)/2 ( mod p^3 ) for prime p >= 5 (apply Mestrovic, equation 37).
Conjectural: a(2*p) == p*(2*p + 1) ( mod p^4 ) for prime p >= 5. (End)
a(n) = A084546(n,n). - Gus Wiseman, Jan 25 2024
a(n) = [x^n] (1+x)^(n*(n+1)/2). - Vaclav Kotesovec, Aug 06 2025

A135861 a(n) = binomial(n*(n+1),n)/(n+1).

Original entry on oeis.org

1, 1, 5, 55, 969, 23751, 749398, 28989675, 1329890705, 70625252863, 4263421511271, 288417894029200, 21616536107173175, 1778197364075525550, 159297460456229992380, 15438280311293473537331, 1609484153977526457766689, 179612918129148904884024975
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Maple
    A135861:=n->binomial(n*(n+1),n)/(n+1); seq(A135861(n), n=0..15); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    Table[Binomial[n*(n + 1), n]/(n + 1), {n, 0, 15}]
  • PARI
    a(n)=binomial(n*(n+1),n)/(n+1)

Formula

a(n) = A135860(n)/(n+1).
a(n) = [x^(n^2)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017
a(p) == 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == 4*p + 1 ( mod p^4 ) for prime p >= 5 (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020
a(n) ~ exp(n + 1/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Oct 17 2020

A135860 a(n) = binomial(n*(n+1), n).

Original entry on oeis.org

1, 2, 15, 220, 4845, 142506, 5245786, 231917400, 11969016345, 706252528630, 46897636623981, 3461014728350400, 281014969393251275, 24894763097057357700, 2389461906843449885700, 247012484980695576597296, 27361230617617949782033713, 3233032526324680287912449550
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n*(n+1), n): n in [0..30]]; // G. C. Greubel, Feb 20 2022
    
  • Mathematica
    Table[Binomial[n^2 + n, n], {n, 0, 16}] (* Arkadiusz Wesolowski, Jul 18 2012 *)
    (* or *)
    Table[SeriesCoefficient[(1+x)^(n*(n+1)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • PARI
    a(n)=binomial(n*(n+1),n)
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k))
    for(n=0,15,print1(a(n),", "))
    
  • Sage
    [binomial(n*(n+1), n) for n in (0..30)] # G. C. Greubel, Feb 20 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k). - Paul D. Hanna, Nov 18 2015
a(n) is divisible by (n+1): a(n)/(n+1) = A135861(n).
a(n) is divisible by (n^2+1): a(n)/(n^2+1) = A135862(n).
a(n) = binomial(2*A000217(n),n). - Arkadiusz Wesolowski, Jul 18 2012
a(n) = [x^n] 1/(1 - x)^(n^2+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Feb 08 2019
a(p) == p + 1 ( mod p^4 ) for prime p >= 5 and a(2*p) == (4*p + 1)*(2*p + 1) ( mod p^4 ) for all prime p. Apply Mestrovic, equation 37. - Peter Bala, Feb 27 2020
a(n) = ((n^2 + n)!)/((n^2)! * n!). - Peter Luschny, Feb 27 2020
a(n) = [x^n] (1 + x)^(n*(n+1)). - Vaclav Kotesovec, Aug 06 2025

A143669 a(n) = binomial((n+1)^2, n) / (n+1)^2.

Original entry on oeis.org

1, 1, 4, 35, 506, 10472, 285384, 9706503, 397089550, 19022318084, 1045659267016, 64924369564353, 4496010926381352, 343688726144945040, 28753733905585301136, 2613784129155164386575, 256569498889138342791510, 27050758656206146528056236
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2008

Keywords

Comments

From Peter Bala, Dec 02 2015: (Start)
Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n/(n^2 + 1)). Cf. A135862.
See Armstrong et al. for combinatorial interpretations of these generalized Catalan number sequences. (End)

Crossrefs

Programs

  • Magma
    [Binomial((n+1)^2, n) / (n+1)^2: n in [0..20]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    Table[Binomial[(n + 1)^2, n]/(n + 1)^2, {n, 0, 30}] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    a(n)=binomial((n+1)^2,n)/(n+1)^2
    

A228509 a(n) = binomial(n^2+n+1,n) * (n+1) / (n^2+n+1) for n>=0.

Original entry on oeis.org

1, 2, 9, 88, 1425, 32886, 992446, 37106784, 1657248417, 86128357150, 5107663394691, 340427678198400, 25194445531808735, 2050156960934135340, 181938723871328671500, 17487609556155439051136, 1809886850192627028383553, 200670984392566362698014110, 23730570474434159458296269953
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 88*x^3 + 1425*x^4 + 32886*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[n^2+n+1,n](n+1))/(n^2+n+1),{n,0,20}] (* Harvey P. Dale, Oct 13 2015 *)
  • PARI
    {a(n)=binomial(n^2+n+1,n)*(n+1)/(n^2+n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (n+1)*A135862(n).
Showing 1-5 of 5 results.