cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A107866 Column 0 of triangle A107865.

Original entry on oeis.org

1, -1, -1, -7, -77, -1145, -21410, -481683, -12655196, -379998938, -12830421321, -480984691304, -19816691903510, -889846823832596, -43247136243424267, -2261480610502143020, -126596066994553497948, -7553154370244179931495, -478456478496821309024061
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=(matrix(n+1,n+1,r,c,if(r>=c, binomial((r-1)*(r-2)/2-(c-1)*(c-2)/2+r-c,r-c)))^-1)[n+1,1]}

A107876 Triangular matrix T, read by rows, that satisfies: [T^k](n,k) = T(n,k-1) for n>=k>0, or, equivalently, (column k of T^k) = SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 7, 7, 3, 1, 1, 37, 37, 15, 4, 1, 1, 268, 268, 106, 26, 5, 1, 1, 2496, 2496, 975, 230, 40, 6, 1, 1, 28612, 28612, 11100, 2565, 425, 57, 7, 1, 1, 391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1, 6230646, 6230646, 2401365, 544423
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, T equals the product of these triangular matrices: T = A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873; reversing the order of these products yields triangle A101479.
Column m of T^k is the number of subpartitions of the initial terms of the sequence (k-1)+n(m-1)+n(n-1)/2 (ignoring 0's above the diagonal). E.g., column 4 of T^3 is 1,3,15,106,975,.... The sequence above is 2,5,9,14,20,.... subp([]) = 1, subp([2]) = 3, subp([2,5]) = 15, subp([2,5,9]) = 106, etc. The matrix product of T^(k-1) * T computes the number of such subpartitions by looking at the first part index where the subpartition is maxed - for [2,5,9,14,20] the third term (9 maxed) has subp([1,4]) for the first two values (not maxed), times subp([5,11]) for the last two values (possibly maxed). - Franklin T. Adams-Watters, Jun 26 2006
T(n,k) is the number of Dyck paths whose sequence of ascent lengths is exactly k,k+1,...,n, for example the T(4,3) = 3 paths are UUUdUUUUd^6, UUUddUUUUd^5 and UUUdddUUUUd^4. - David Scambler, May 30 2012

Examples

			G.f. for column 1:
1 = T(1,1)*(1-x)^1 + T(2,1)*x*(1-x)^2 + T(3,1)*x^2*(1-x)^4 + T(4,1)*x^3*(1-x)^7 + T(5,1)*x^4*(1-x)^11 + T(6,1)*x^5*(1-x)^16 +...
= 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 +...
G.f. for column 2:
1 = T(2,2)*(1-x)^1 + T(3,2)*x*(1-x)^3 + T(4,2)*x^2*(1-x)^6 + T(5,2)*x^3*(1-x)^10 + T(6,2)*x^4*(1-x)^15 + T(7,2)*x^5*(1-x)^21 +...
= 1*(1-x)^1 + 1*x*(1-x)^3 + 3*x^2*(1-x)^6 + 15*x^3*(1-x)^10 + 106*x^4*(1-x)^15 + 975*x^5*(1-x)^21 +...
Triangle T begins:
       1;
       1,      1;
       1,      1,      1;
       2,      2,      1,     1;
       7,      7,      3,     1,    1;
      37,     37,     15,     4,    1,   1;
     268,    268,    106,    26,    5,   1,  1;
    2496,   2496,    975,   230,   40,   6,  1, 1;
   28612,  28612,  11100,  2565,  425,  57,  7, 1, 1;
  391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1; ...
where column 1 of T = SHIFT_LEFT(column 0 of T).
Matrix square T^2 begins:
     1;
     2,   1;
     3,   2,   1;
     7,   5,   2,  1;
    26,  19,   7,  2,  1;
   141, 104,  37,  9,  2, 1;
  1034, 766, 268, 61, 11, 2, 1; ...
Compare column 2 of T^2 with column 1 of T.
Matrix inverse begins:
   1;
  -1,    1;
   0,   -1,   1;
   0,   -1,  -1,   1;
   0,   -3,  -2,  -1,  1;
   0,  -15,  -9,  -3, -1,  1;
   0, -106, -61, -18, -4, -1, 1; ...
Compare column 1 of T^-1 with column 2 of T and
compare column 2 of T^-1 with column 3 of T^2.
		

Crossrefs

Cf. A107862, A107865, A107867, A107870, A107877 (column 1), A107878 (column 2), A107879 (column 3), A107880 (matrix square), A107884 (matrix cube), A107889 (matrix inverse).
Cf. A115728, A115729, A101479 (dual triangle).
T(2n,n) gives A300954.

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[nA107867 = Table[Binomial[If[nA107862].A107867;
    Table[t[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after first comment, fixed by Vaclav Kotesovec, Jun 13 2018 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))
    
  • PARI
    /* Print the Triangular Matrix to the Power p: */
    {T(n,k,p)=polcoeff(1- sum(j=0,n-k-1,T(j+k,k,p)*x^j*(1-x+x*O(x^n))^(j*(j-1)/2+j*k+p)),n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k,1),", ")); print(""))

Formula

G.f. for column k of T^m, the m-th matrix power of this triangle T:
(1) 1 = Sum_{j>=0} T(k+j, k) * x^j * (1-x)^(1+(k+j)*(k+j-1)/2-k*(k-1)/2) for m=1.
(2) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j*(1-x)^(m+(k+j)*(k+j-1)/2-k*(k-1)/2) for all m and k>=0.
(3) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j / C(x)^(m-j+(k+j)*(k+j-1)/2-k*(k-1)/2) where C(x)=2/(1+sqrt(1-4*x)) is g.f. for A000108 (Catalan numbers).
Matrix inverse of this triangle T satisfies:
(4) [T^-1](n,k) = -[T^k](n,k+1) for n>k>=0.

A107862 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2 - k*(k-1)/2 + n-k, n-k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 20, 10, 3, 1, 210, 84, 21, 4, 1, 3003, 1001, 220, 36, 5, 1, 54264, 15504, 3060, 455, 55, 6, 1, 1184040, 296010, 53130, 7315, 816, 78, 7, 1, 30260340, 6724520, 1107568, 142506, 14950, 1330, 105, 8, 1, 886163135, 177232627, 26978328, 3262623, 324632, 27405, 2024, 136, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        1,      1;
        3,      2,     1;
       20,     10,     3,    1;
      210,     84,    21,    4,   1;
     3003,   1001,   220,   36,   5,  1;
    54264,  15504,  3060,  455,  55,  6, 1;
  1184040, 296010, 53130, 7315, 816, 78, 7, 1; ...
		

Crossrefs

Cf. A014068 (column 0), A107863 (column 1), A099121 (column 2), A107865, A107867, A107870, A107876.

Programs

  • Magma
    [Binomial(Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    T[n_,k_]:= Binomial[(n-k)*(n+k+1)/2, n-k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 19 2022 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2+n-k,n-k)
    
  • Sage
    flatten([[binomial( (n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

T(n,k) = binomial( (n-k)*(n+k+1)/2, n-k). - G. C. Greubel, Feb 19 2022

A107867 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2-k*(k-1)/2+n-k+1,n-k).

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 35, 15, 4, 1, 330, 120, 28, 5, 1, 4368, 1365, 286, 45, 6, 1, 74613, 20349, 3876, 560, 66, 7, 1, 1560780, 376740, 65780, 8855, 969, 91, 8, 1, 38608020, 8347680, 1344904, 169911, 17550, 1540, 120, 9, 1, 1101716330, 215553195, 32224114
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
1;
2,1;
6,3,1;
35,15,4,1;
330,120,28,5,1;
4368,1365,286,45,6,1;
74613,20349,3876,560,66,7,1;
1560780,376740,65780,8855,969,91,8,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+1,n-k)

A107870 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2-k*(k-1)/2+n-k+2, n-k).

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 56, 21, 5, 1, 495, 165, 36, 6, 1, 6188, 1820, 364, 55, 7, 1, 100947, 26334, 4845, 680, 78, 8, 1, 2035800, 475020, 80730, 10626, 1140, 105, 9, 1, 48903492, 10295472, 1623160, 201376, 20475, 1771, 136, 10, 1, 1362649145, 260932815
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
1;
3,1;
10,4,1;
56,21,5,1;
495,165,36,6,1;
6188,1820,364,55,7,1;
100947,26334,4845,680,78,8,1;
2035800,475020,80730,10626,1140,105,9,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+2,n-k)

A107873 Triangle, read by rows, where T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).

Original entry on oeis.org

1, 4, 1, 15, 5, 1, 84, 28, 6, 1, 715, 220, 45, 7, 1, 8568, 2380, 455, 66, 8, 1, 134596, 33649, 5985, 816, 91, 9, 1, 2629575, 593775, 98280, 12650, 1330, 120, 10, 1, 61523748, 12620256, 1947792, 237336, 23751, 2024, 153, 11, 1, 1677106640, 314457495, 45379620, 5245786, 501942, 40920, 2925, 190, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        4,      1;
       15,      5,     1;
       84,     28,     6,     1;
      715,    220,    45,     7,    1;
     8568,   2380,   455,    66,    8,   1;
   134596,  33649,  5985,   816,   91,   9,  1;
  2629575, 593775, 98280, 12650, 1330, 120, 10, 1; ...
		

Crossrefs

Programs

  • Magma
    [Binomial(3+Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Flatten[Table[Binomial[(n(n-1))/2-(k(k-1))/2+n-k+3,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+3,n-k)
    
  • Sage
    flatten([[binomial(3+(n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

From G. C. Greubel, Feb 19 2022: (Start)
T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).
T(n, 0) = A107874(n).
T(n, 1) = A107875(n). (End)
Showing 1-6 of 6 results.