cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107873 Triangle, read by rows, where T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).

Original entry on oeis.org

1, 4, 1, 15, 5, 1, 84, 28, 6, 1, 715, 220, 45, 7, 1, 8568, 2380, 455, 66, 8, 1, 134596, 33649, 5985, 816, 91, 9, 1, 2629575, 593775, 98280, 12650, 1330, 120, 10, 1, 61523748, 12620256, 1947792, 237336, 23751, 2024, 153, 11, 1, 1677106640, 314457495, 45379620, 5245786, 501942, 40920, 2925, 190, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        4,      1;
       15,      5,     1;
       84,     28,     6,     1;
      715,    220,    45,     7,    1;
     8568,   2380,   455,    66,    8,   1;
   134596,  33649,  5985,   816,   91,   9,  1;
  2629575, 593775, 98280, 12650, 1330, 120, 10, 1; ...
		

Crossrefs

Programs

  • Magma
    [Binomial(3+Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Flatten[Table[Binomial[(n(n-1))/2-(k(k-1))/2+n-k+3,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+3,n-k)
    
  • Sage
    flatten([[binomial(3+(n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

From G. C. Greubel, Feb 19 2022: (Start)
T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).
T(n, 0) = A107874(n).
T(n, 1) = A107875(n). (End)