Original entry on oeis.org
1, 2, 1, 3, 2, 1, 7, 5, 2, 1, 26, 19, 7, 2, 1, 141, 104, 37, 9, 2, 1, 1034, 766, 268, 61, 11, 2, 1, 9693, 7197, 2496, 550, 91, 13, 2, 1, 111522, 82910, 28612, 6195, 982, 127, 15, 2, 1, 1528112, 1136923, 391189, 83837, 12977, 1596, 169, 17, 2, 1, 24372513, 18141867, 6230646, 1326923, 202494, 24206, 2424, 217, 19, 2, 1
Offset: 0
G.f. for column 0:
1 = T(0,0)*(1-x)^2 + T(1,0)*x*(1-x)^2 + T(2,0)*x^2*(1-x)^3 + T(3,0)*x^3*(1-x)^5 + T(4,0)*x^4*(1-x)^8 + T(5,0)*x^5*(1-x)^12 +...
= 1*(1-x)^2 + 2*x*(1-x)^2 + 3*x^2*(1-x)^3 + 7*x^3*(1-x)^5 + 26*x^4*(1-x)^8 + 141*x^5*(1-x)^12 +...
G.f. for column 1:
1 = T(1,1)*(1-x)^2 + T(2,1)*x*(1-x)^3 + T(3,1)*x^2*(1-x)^5 + T(4,1)*x^3*(1-x)^8 + T(5,1)*x^4*(1-x)^12 + T(6,1)*x^5*(1-x)^17 +...
= 1*(1-x)^2 + 2*x*(1-x)^3 + 5*x^2*(1-x)^5 + 19*x^3*(1-x)^8 + 104*x^4*(1-x)^12 + 766*x^5*(1-x)^17 +...
Triangle T begins:
1;
2,1;
3,2,1;
7,5,2,1;
26,19,7,2,1;
141,104,37,9,2,1;
1034,766,268,61,11,2,1;
9693,7197,2496,550,91,13,2,1;
111522,82910,28612,6195,982,127,15,2,1;
...
-
max = 10;
A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
T = MatrixPower[Inverse[A107862].A107867, 2];
Table[T[[n+1, k+1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
-
{T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(2+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}
Original entry on oeis.org
1, 2, 3, 7, 26, 141, 1034, 9693, 111522, 1528112, 24372513, 444461496, 9135985760, 209223309377, 5286985099830, 146225910921737, 4395973641599418, 142794782804641965, 4985911547339049132, 186284207595651780174
Offset: 0
1 = 1*(1-x)^2 + 2*x*(1-x)^2 + 3*x^2*(1-x)^3 +
7*x^3*(1-x)^5 + 26*x^4*(1-x)^8 + 141*x^5*(1-x)^12 +...
Original entry on oeis.org
1, 2, 5, 19, 104, 766, 7197, 82910, 1136923, 18141867, 330940109, 6803936050, 155839142185, 3938383850350, 108934529005948, 3275059508166297, 106388204134734785, 3714826559490125850, 138796913898027894261
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 19*x^3 + 104*x^4 + 766*x^5 + 7197*x^6 + 82910*x^7 + ...
1 = 1*(1-x)^2 + 2*x*(1-x)^3 + 5*x^2*(1-x)^5 +
19*x^3*(1-x)^8 + 104*x^4*(1-x)^12 + 766*x^5*(1-x)^17 +...
-
a[ n_, k_: 2, j_: 0] := If[ n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
-
{a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(2+k*(k+1)/2)),n)}
A107889
Triangular matrix T, read by rows, that satisfies: [T^-k](n,k) = -T(n,k-1) for n >= k > 0, or, equivalently, (column k of T^-k) = -SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored. Also, matrix inverse of triangle A107876.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, -3, -2, -1, 1, 0, -15, -9, -3, -1, 1, 0, -106, -61, -18, -4, -1, 1, 0, -975, -550, -154, -30, -5, -1, 1, 0, -11100, -6195, -1689, -310, -45, -6, -1, 1, 0, -151148, -83837, -22518, -4005, -545, -63, -7, -1, 1, 0, -2401365, -1326923, -353211, -61686, -8105, -875, -84, -8, -1, 1
Offset: 0
G.f. for column 1:
1 = T(1,1)*(1-x)^-1 + T(2,1)*x*(1-x)^0 + T(3,1)*x^2*(1-x)^2 + T(4,1)*x^3*(1-x)^5 + T(5,1)*x^4*(1-x)^9 + T(6,1)*x^5*(1-x)^14 + ...
= 1*(1-x)^-1 - 1*x*(1-x)^0 - 1*x^2*(1-x)^2 - 3*x^3*(1-x)^5 - 15*x^4*(1-x)^9 - 106*x^5*(1-x)^14 - 975*x^6*(1-x)^20 + ...
G.f. for column 2:
1 = T(2,2)*(1-x)^-1 + T(3,2)*x*(1-x)^1 + T(4,2)*x^2*(1-x)^4 + T(5,2)*x^3*(1-x)^8 + T(6,2)*x^4*(1-x)^13 + T(7,2)*x^5*(1-x)^19 + ...
= 1*(1-x)^-1 - 1*x*(1-x)^1 - 2*x^2*(1-x)^4 - 9*x^3*(1-x)^8 - 61*x^4*(1-x)^13 - 550*x^5*(1-x)^19 - 6195*x^6*(1-x)^26 + ...
Triangle begins:
1;
-1, 1;
0, -1, 1;
0, -1, -1, 1;
0, -3, -2, -1, 1;
0, -15, -9, -3, -1, 1;
0, -106, -61, -18, -4, -1, 1;
0, -975, -550, -154, -30, -5, -1, 1;
0, -11100, -6195, -1689, -310, -45, -6, -1, 1;
...
-
max = 10;
A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
T = Inverse[Inverse[A107862].A107867];
Table[T[[n + 1, k + 1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
-
{T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(-1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}
Showing 1-4 of 4 results.
Comments