cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107880 Matrix square of triangle A107876; equals matrix product of triangles: A107876^2 = A107862^-1*A107870 = A107867^-1*A107873.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 7, 5, 2, 1, 26, 19, 7, 2, 1, 141, 104, 37, 9, 2, 1, 1034, 766, 268, 61, 11, 2, 1, 9693, 7197, 2496, 550, 91, 13, 2, 1, 111522, 82910, 28612, 6195, 982, 127, 15, 2, 1, 1528112, 1136923, 391189, 83837, 12977, 1596, 169, 17, 2, 1, 24372513, 18141867, 6230646, 1326923, 202494, 24206, 2424, 217, 19, 2, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Column 0 is A107881. Column 1 is A107882. Column 3 equals A107883. Column 2 equals SHIFT_LEFT(A107877), where A107877 is column 1 of A107876.

Examples

			G.f. for column 0:
1 = T(0,0)*(1-x)^2 + T(1,0)*x*(1-x)^2 + T(2,0)*x^2*(1-x)^3 + T(3,0)*x^3*(1-x)^5 + T(4,0)*x^4*(1-x)^8 + T(5,0)*x^5*(1-x)^12 +...
= 1*(1-x)^2 + 2*x*(1-x)^2 + 3*x^2*(1-x)^3 + 7*x^3*(1-x)^5 + 26*x^4*(1-x)^8 + 141*x^5*(1-x)^12 +...
G.f. for column 1:
1 = T(1,1)*(1-x)^2 + T(2,1)*x*(1-x)^3 + T(3,1)*x^2*(1-x)^5 + T(4,1)*x^3*(1-x)^8 + T(5,1)*x^4*(1-x)^12 + T(6,1)*x^5*(1-x)^17 +...
= 1*(1-x)^2 + 2*x*(1-x)^3 + 5*x^2*(1-x)^5 + 19*x^3*(1-x)^8 + 104*x^4*(1-x)^12 + 766*x^5*(1-x)^17 +...
Triangle T begins:
  1;
  2,1;
  3,2,1;
  7,5,2,1;
  26,19,7,2,1;
  141,104,37,9,2,1;
  1034,766,268,61,11,2,1;
  9693,7197,2496,550,91,13,2,1;
  111522,82910,28612,6195,982,127,15,2,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    max = 10;
    A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
    A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
    T = MatrixPower[Inverse[A107862].A107867, 2];
    Table[T[[n+1, k+1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
  • PARI
    {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(2+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}

Formula

G.f. for column k: 1 = Sum_{j>=0} T(k+j, k)*x^j*(1-x)^(2+(k+j)*(k+j-1)/2-k*(k-1)/2).

A107881 Column 0 of triangle A107880.

Original entry on oeis.org

1, 2, 3, 7, 26, 141, 1034, 9693, 111522, 1528112, 24372513, 444461496, 9135985760, 209223309377, 5286985099830, 146225910921737, 4395973641599418, 142794782804641965, 4985911547339049132, 186284207595651780174
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Examples

			1 = 1*(1-x)^2 + 2*x*(1-x)^2 + 3*x^2*(1-x)^3 +
7*x^3*(1-x)^5 + 26*x^4*(1-x)^8 + 141*x^5*(1-x)^12 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(2+k*(k-1)/2)),n)}

Formula

G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(2 + k*(k-1)/2).

A107883 Column 3 of triangle A107880.

Original entry on oeis.org

1, 2, 9, 61, 550, 6195, 83837, 1326923, 24078588, 493309850, 11271757335, 284379843234, 7856320956198, 235986714918110, 7660827258318780, 267365373971139600, 9985779421324740445, 397508459931685273305
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Examples

			1 = 1*(1-x)^2 + 2*x*(1-x)^5 + 9*x^2*(1-x)^9 +
61*x^3*(1-x)^14 + 550*x^4*(1-x)^20 + 6195*x^5*(1-x)^27 +...
		

Crossrefs

Programs

  • Mathematica
    a[ n_, k_: 0, j_: 2] := If[n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^((k+2)*(k+3)/2-1)),n)}

Formula

G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^((k+2)*(k+3)/2 - 1).

A121435 Matrix inverse of triangle A122175, where A122175(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 7, -19, 18, -7, 1, -37, 104, -106, 49, -11, 1, 268, -766, 809, -406, 110, -16, 1, -2496, 7197, -7746, 4060, -1210, 216, -22, 1, 28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1, -391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2006

Keywords

Examples

			Triangle begins:
1;
-1, 1;
1, -2, 1;
-2, 5, -4, 1;
7, -19, 18, -7, 1;
-37, 104, -106, 49, -11, 1;
268, -766, 809, -406, 110, -16, 1;
-2496, 7197, -7746, 4060, -1210, 216, -22, 1;
28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1;
-391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1; ...
		

Crossrefs

Cf. A098568, A107876; unsigned columns: A107877, A107882.

Programs

  • PARI
    /* Matrix Inverse of A122175 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r-1,r-c)))); return((M^-1)[n+1,k+1])
    
  • PARI
    /* Obtain by G.F. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+1)), n-k)

Formula

(1) T(n,k) = A121434(n-1,k) - A121434(n-1,k+1).
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 1)](n,k); i.e., column k equals signed column k of matrix power A107876^(k*(k+1)/2 + 1).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 1);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 1).
Showing 1-4 of 4 results.