cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122175 Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 7, 1, 1, 5, 20, 28, 11, 1, 1, 6, 35, 84, 66, 16, 1, 1, 7, 56, 210, 286, 136, 22, 1, 1, 8, 84, 462, 1001, 816, 253, 29, 1, 1, 9, 120, 924, 3003, 3876, 2024, 435, 37, 1, 1, 10, 165, 1716, 8008, 15504, 12650, 4495, 703, 46, 1, 1, 11, 220
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2006

Keywords

Comments

Remarkably, column k of the matrix inverse (A121435) equals signed column k of matrix power: A107876^(k*(k+1)/2 + 1).

Examples

			Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 7, 1;
1, 5, 20, 28, 11, 1;
1, 6, 35, 84, 66, 16, 1;
1, 7, 56, 210, 286, 136, 22, 1;
1, 8, 84, 462, 1001, 816, 253, 29, 1; ...
		

Crossrefs

Cf. A121435 (inverse); variants: A098568, A122176, A122177.

Programs

  • Mathematica
    Table[Binomial[(k(k+1))/2+n-k,n-k],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 22 2016 *)
  • PARI
    T(n,k)=if(n
    				

A121436 Matrix inverse of triangle A122176, where A122176(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -7, 9, -5, 1, 26, -37, 25, -8, 1, -141, 210, -155, 60, -12, 1, 1034, -1575, 1215, -516, 126, -17, 1, -9693, 14943, -11806, 5270, -1426, 238, -23, 1, 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1, -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2006

Keywords

Examples

			Triangle begins:
1;
-2, 1;
3, -3, 1;
-7, 9, -5, 1;
26, -37, 25, -8, 1;
-141, 210, -155, 60, -12, 1;
1034, -1575, 1215, -516, 126, -17, 1;
-9693, 14943, -11806, 5270, -1426, 238, -23, 1;
111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1;
-1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1; ...
		

Crossrefs

Cf. A098568, A107876; unsigned columns: A107881, A107886.

Programs

  • PARI
    /* Matrix Inverse of A122176 */
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r,r-c)))); return((M^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Obtain by G.F. */
    {T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+2)), n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

(1) T(n,k) = A121435(n-1,k) - A121435(n-1,k+1).
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 2)](n,k);
i.e., column k equals signed column k of A107876^(k*(k+1)/2 + 2).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 2);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 2).

A121439 Matrix inverse of triangle A121334, where A121334(n,k) = C( n*(n+1)/2 + n-k, n-k) for n>=k>=0.

Original entry on oeis.org

1, -2, 1, -2, -4, 1, -14, 0, -7, 1, -143, -22, 11, -11, 1, -1928, -260, -40, 40, -16, 1, -32219, -3894, -385, -121, 99, -22, 1, -640784, -70644, -6496, -406, -406, 203, -29, 1, -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1, -385500056, -36631962, -2947266, -205620, -14076, 3657, -2967, 621
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121435.

Examples

			Triangle, A121334^-1, begins:
1;
-2, 1;
-2, -4, 1;
-14, 0, -7, 1;
-143, -22, 11, -11, 1;
-1928, -260, -40, 40, -16, 1;
-32219, -3894, -385, -121, 99, -22, 1;
-640784, -70644, -6496, -406, -406, 203, -29, 1;
-14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121334^-1 equals row 3 of A121412^(-7), which begins:
1;
-7, 1;
7, -7, 1;
-14, 0, -7, 1; ...
Row 4 of A121334^-1 equals row 4 of A121412^(-11), which begins:
1;
-11, 1;
33, -11, 1;
-22, 22, -11, 1;
-143, -22, 11, -11, 1;...
		

Crossrefs

Cf. A121334 (matrix inverse); A121412; variants: A121438, A121440, A121441; A121435 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121334 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 1)](n,k) for n>=k>=0; i.e., row n of A121334^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 1).
Showing 1-3 of 3 results.