A107884
Matrix cube of triangle A107876; equals the product of triangular matrices: A107876^3 = A107862^-1*A107873.
Original entry on oeis.org
1, 3, 1, 6, 3, 1, 16, 9, 3, 1, 63, 37, 12, 3, 1, 351, 210, 67, 15, 3, 1, 2609, 1575, 498, 106, 18, 3, 1, 24636, 14943, 4701, 975, 154, 21, 3, 1, 284631, 173109, 54298, 11100, 1689, 211, 24, 3, 1, 3909926, 2381814, 745734, 151148, 22518, 2688, 277, 27, 3, 1
Offset: 0
G.f. for column 0:
1 = T(0,0)*(1-x)^3 + T(1,0)*x*(1-x)^3 + T(2,0)*x^2*(1-x)^4 + T(3,0)*x^3*(1-x)^6 + T(4,0)*x^4*(1-x)^9 + T(5,0)*x^5*(1-x)^13 + ...
= 1*(1-x)^3 + 3*x*(1-x)^3 + 6*x^2*(1-x)^4 + 16*x^3*(1-x)^6 + 63*x^4*(1-x)^9 + 351*x^5*(1-x)^13 + ...
G.f. for column 1:
1 = T(1,1)*(1-x)^3 + T(2,1)*x*(1-x)^4 + T(3,1)*x^2*(1-x)^6 + T(4,1)*x^3*(1-x)^9 + T(5,1)*x^4*(1-x)^13 + T(6,1)*x^5*(1-x)^18 + ...
= 1*(1-x)^3 + 3*x*(1-x)^4 + 9*x^2*(1-x)^6 + 37*x^3*(1-x)^9 + 210*x^4*(1-x)^13 + 1575*x^5*(1-x)^18 + ...
Triangle begins:
1;
3, 1;
6, 3, 1;
16, 9, 3, 1;
63, 37, 12, 3, 1;
351, 210, 67, 15, 3, 1;
2609, 1575, 498, 106, 18, 3, 1;
24636, 14943, 4701, 975, 154, 21, 3, 1;
284631, 173109, 54298, 11100, 1689, 211, 24, 3, 1;
...
Cf.
A107862,
A107870,
A107873,
A107867,
A107876,
A107880,
A107884,
A107885,
A107886,
A107887,
A107888.
-
max = 10;
A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];
A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];
T = MatrixPower[Inverse[A107862].A107867, 3];
Table[T[[n+1, k+1]], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2024 *)
-
{T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(3+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}
Original entry on oeis.org
1, 3, 12, 67, 498, 4701, 54298, 745734, 11911221, 217418722, 4471886340, 102454974993, 2589782600870, 71643147090159, 2154145374733176, 69981625464827605, 2443741571641202568, 91309620200404008348
Offset: 0
G.f. = 1 + 3*x + 12*x^2 + 67*x^3 + 498*x^4 + 4701*x^5 + 54298*x^6 + ...
1 = 1*(1-x)^2 + 2*x*(1-x)^5 + 9*x^2*(1-x)^9 +
61*x^3*(1-x)^14 + 550*x^4*(1-x)^20 + 6195*x^5*(1-x)^27 +...
-
a[ n_, k_: 2, j_: 1] := If[n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
-
{a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(2+(k+1)*(k+2)/2)),n)}
Original entry on oeis.org
1, 3, 9, 37, 210, 1575, 14943, 173109, 2381814, 38087355, 695745075, 14317460370, 328142173159, 8296618775100, 229557238129530, 6903176055689085, 224285333475911340, 7832574292981396104, 292678312428437482293
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 37*x^3 + 210*x^4 + 1575*x^5 + 14943*x^6 + ...
1 = 1*(1-x)^3 + 3*x*(1-x)^4 + 9*x^2*(1-x)^6 + 37*x^3*(1-x)^9 + 210*x^4*(1-x)^13 + 1575*x^5*(1-x)^18 + ...
-
a[ n_, k_: 3, j_: 0] := If[ n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
-
a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(3+k*(k+1)/2)),n)
Original entry on oeis.org
1, 3, 18, 154, 1689, 22518, 353211, 6373053, 130079286, 2964644430, 74663152896, 2060033160771, 61821589542329, 2005535153907369, 69957741972993120, 2611812581931916545, 103938147849788867430, 4392991505873072541159
Offset: 0
1 = 1*(1-x)^3 + 3*x*(1-x)^7 + 18*x^2*(1-x)^12 +
154*x^3*(1-x)^18 + 1689*x^4*(1-x)^25 + 22518*x^5*(1-x)^33 +...
-
a[ n_, k_: 0, j_: 3] := If[n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
-
{a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^((k+3)*(k+4)/2-3)),n)}
A121437
Matrix inverse of triangle A122177, where A122177(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, -3, 1, 6, -4, 1, -16, 14, -6, 1, 63, -62, 33, -9, 1, -351, 365, -215, 72, -13, 1, 2609, -2790, 1731, -642, 143, -18, 1, -24636, 26749, -17076, 6696, -1664, 261, -24, 1, 284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1, -3909926, 4305579, -2822991, 1166310, -320515, 60768, -8012, 713, -39, 1
Offset: 0
Triangle begins:
1;
-3, 1;
6, -4, 1;
-16, 14, -6, 1;
63, -62, 33, -9, 1;
-351, 365, -215, 72, -13, 1;
2609, -2790, 1731, -642, 143, -18, 1;
-24636, 26749, -17076, 6696, -1664, 261, -24, 1;
284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1; ...
-
/* Matrix Inverse of A122177 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r+1,r-c)))); return((M^-1)[n+1,k+1])
-
/* Obtain by g.f. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+3)), n-k)
Showing 1-5 of 5 results.
Comments