cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107915 a(n) = binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4)/75.

Original entry on oeis.org

1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, 26794167400, 44253495000, 71627692500, 113794603650, 177694650315
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
Partial sums of A107917. - Peter Bala, Sep 21 2007

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).

Crossrefs

Programs

  • Maple
    a:=n->(1/75)*binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4): seq(a(n),n=0..27);
    seq(binomial(n,n-2)*binomial(n+1,n-3)*binomial(n+2,n-4)/(5*3!), n=4..22); # Zerinvary Lajos, May 29 2007
  • Mathematica
    a[n_] := Binomial[n + 4, 4] * Binomial[n + 5, 4] * Binomial[n + 6, 4]/75; Array[a, 25, 0] (* Amiram Eldar, May 29 2022 *)

Formula

a(n) = C(n,n-2)*C(n+1,n-3)*C(n+2,n-4)/(5*3!), n>=4. - Zerinvary Lajos, May 29 2007
a(n-3) = (1/144) * Sum_{1 <= x_1, x_2, x_3 <= n} x_1*x_2*x_3*(det V(x_1,x_2,x_3))^2 = 1/144*sum {1 <= i,j,k <= n} i*j*k*((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007
G.f.: -(x^6+22*x^5+113*x^4+190*x^3+113*x^2+22*x+1)/(x-1)^13. - Colin Barker, Jun 06 2012
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 25200*Pi^2 - 248713.
Sum_{n>=0} (-1)^n/a(n) = 376003 - 430080*log(2) - 64800*zeta(3). (End)