A047819
a(n) = Product_{i=1..n} ((i+3)*(i+4)*(i+5))/(i*(i+1)*(i+2)).
Original entry on oeis.org
1, 20, 175, 980, 4116, 14112, 41580, 108900, 259545, 572572, 1184183, 2318680, 4331600, 7768320, 13441968, 22535064, 36729945, 58373700, 90684055, 138003404, 206108980, 302588000, 437287500, 622849500, 875343105, 1215006156, 1667110095
Offset: 0
G.f. = 1 + 20*x + 175*x^2 + 980*x^3 + 4116*x^4 + 14112*x^5 + 41580*x^6 + ...
- O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 2 and p. 105, eq.(ii), K(0a(2,5,n))).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Paolo Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.2(ii), case a=2].
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
a:=n->(n+1)*(n+2)^2*(n+3)^3*(n+4)^2*(n+5)/8640: seq(a(n),n=0..30); # Emeric Deutsch, Jun 18 2005
-
a[n_] :=(n + 1)*(n + 2)^2*(n + 3)^3*(n + 4)^2*(n + 5)/8640;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 19 2018, after Emeric Deutsch *)
-
{a(n) = if( n<0, 0, binomial(n+5, 5) * binomial(n+4, 3) * (n+3) / 12)}; /* Michael Somos, Nov 14 2002 */
-
{a(n) = my(s=sign(n+3)); n=abs(n+3)-3; -s/8 * polcoeff( charpoly( matrix(n+3, n+3, i, j, (i-j)^2)), n)}; /* Michael Somos, Nov 14 2002 */
Original entry on oeis.org
0, 0, 1, 69, 1694, 22932, 208152, 1413720, 7697052, 35194302, 139687119, 493127635, 1577331756, 4637757488, 12679063488, 32529562560, 78917794128, 182184724908, 402332471541, 853769650041, 1747606106554, 3462012537060, 6656436729800, 12452933493000
Offset: 1
-
Join[{0,0,1},Differences[Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,30}]]] (* Harvey P. Dale, Aug 08 2015 *)
A120247
Triangle of Hankel transforms of binomial(n+k, k).
Original entry on oeis.org
1, 1, -1, 1, -3, -1, 1, -6, -10, 1, 1, -10, -50, 35, 1, 1, -15, -175, 490, 126, -1, 1, -21, -490, 4116, 5292, -462, -1, 1, -28, -1176, 24696, 116424, -60984, -1716, 1, 1, -36, -2520, 116424, 1646568, -3737448, -736164, 6435, 1, 1, -45, -4950, 457380, 16818516, -133613766, -131589315, 9202050, 24310, -1
Offset: 0
Triangle begins
1;
1, -1;
1, -3, -1;
1, -6, -10, 1;
1, -10, -50, 35, 1;
1, -15, -175, 490, 126, -1;
1, -21, -490, 4116, 5292, -462, -1;
1, -28, -1176, 24696, 116424, -60984, -1716, 1;
-
p:= func< m,k | k eq 0 select 1 else (&*[Binomial(m+j, k+1): j in [1..k]]) >;
A120247:= func< n,k | (-1)^Floor((k+1)/2)*p(n,k)/p(k,k) >;
[A120247(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2023
-
A120247 := proc(n,k)
(cos(Pi*k/2)-sin(Pi*k/2))*mul(binomial(n+j+1,k+1),j=0..k-1)/mul(binomial(k+j+1,k+1),j=0..k-1) ;
simplify(%) ;
end proc: # R. J. Mathar, Mar 22 2013
-
p[m_, k_]:= Product[Binomial[m+j, k+1], {j,k}];
T[n_, k_]:= (-1)^Floor[(k+1)/2]*p[n,k]/p[k,k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2023 *)
-
def p(m,k): return product(binomial(m+j+1,k+1) for j in range(k))
def A120247(n,k): return (-1)^((k+1)//2)*p(n,k)/p(k,k)
flatten([[A120247(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 15 2023
A296419
Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.
Original entry on oeis.org
1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1
The triangle starts in row 1 as
1;
1, 4;
1, 10, 50;
1, 20, 175, 980;
1, 35, 490, 4116, 24696;
1, 56, 1176, 14112, 116424, 731808;
1, 84, 2520, 41580, 457380, 3737448, 24293412;
1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
-
A296419 := proc(i,j)
2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
end proc:
seq(seq(A296419(i,j),j=1..i),i=1..10) ;
A338244
Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).
Original entry on oeis.org
35, 60, 30, 4, 490, 1470, 1695, 940, 255, 30, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 24696, 118590, 243994, 281372, 199822, 90482, 26195, 4748, 517, 32, 10, 116424, 635362, 1513660, 2068248, 1791158, 1025836, 393659, 100450, 16583, 1678, 930, 21
Offset: 1
Triangle begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
n=1: 35 60 30 4
n=2: 490 1470 1695 940 255 30 1
n=3: 4116 16468 27293 24262 12521 3796 653 58 2
n=4: 24696 118590 243994 281372 199822 90482 26195 4748 517 32 1
n=5: 116424 635362 1513660 2068248 1791158 1025836 393659 100450 16583 1678 93 2
...
Row n=4 corresponds to the polynomial 24696 + 118590*x + 243994*x^2 + 281372*x^3 + 199822*x^4 + 90482*x^5 + 26195*x^6 + 4748*x^7 + 517*x^8 + 32*x^9 + x^10.
- C.-P. Chou, ZZDecomposer executable.
- C.-P. Chou, ZZCalculator source code.
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH Commun. Math. Comput. Chem. 68 (2012), 3-30.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,4,n)).
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996), 147-167 (ZZ polynomial is defined by Eq.(2.1) and working formula is given by Eq.(2.2)).
-
(n,k)->add(binomial(k+i,k)*(binomial(n,k+i)*binomial(12,k+i)+18*binomial(n+1,k+i)*binomial(10,k+i-2)+84*binomial(n+2,k+i)*binomial(8,k+i-4)+126*binomial(n+3,k+i)*binomial(6,k+i-6)+57*binomial(n+4,k+i)*binomial(4,k+i-8)+4*binomial(n+5,k+i)*binomial(2,k+i-10)+add(4*binomial(n+1+h,k+i)*binomial(9,k+i-3)+24*binomial(n+2+h,k+i)*binomial(7,k+i-5)+36*binomial(n+3+h,k+i)*binomial(5,k+i-7)+14*binomial(n+4+h,k+i)*binomial(3,k+i-9),h = 0 .. 1)+add(add(binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k+i)*binomial(6-2*s,k+i-6-2*s),s = 0 .. 2),h = 0 .. 2)),i = 0 .. 12).
A338259
Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).
Original entry on oeis.org
1, 12, 18, 41, 24, 120, 200, 120, 24, 11, 36, 306, 996, 1446, 984, 303, 42, 21, 48, 576, 2800, 6525, 7848, 4957, 1644, 274, 22, 11, 60, 930, 6020, 19365, 33600, 32487, 17694, 5336, 858, 71, 21, 72, 1368, 11064, 45435, 103200, 134806, 102912, 45567, 11358, 1510, 86, 1
Offset: 1
Triangle begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
n=1: 1 12 18 4
n=2: 1 24 120 200 120 24 1
n=3: 1 36 306 996 1446 984 303 42 2
n=4: 1 48 576 2800 6525 7848 4957 1644 274 22 1
n=5: 1 60 930 6020 19365 33600 32487 17694 5336 858 71 2
n=6: 1 72 1368 11064 45435 103200 134806 102912 45567 11358 1510 86 1
...
Row n=4 corresponds to the polynomial 1 + 48*(1+x) + 576*(1+x)^2 + 2800*(1+x)^3 + 6525*(1+x)^4 + 7848*(1+x)^5 + 4957*(1+x)^6 + 1644*(1+x)^7 + 274*(1+x)^8 + 22*(1+x)^9 + (1+x)^10.
- C.-P. Chou, ZZDecomposer executable.
- C.-P. Chou, ZZCalculator source code.
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH Commun. Math. Comput. Chem. 68 (2012), 3-30.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,4,n)).
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems III, Discrete Math. 212 (2000), 261-269 (proper sextet is defined in Fig.1 and ZZ polynomial in the basis of (1+x)^k monomials is defined by Theorem 2).
Row n=3 is identical to row n=4 of
A338217 owing to symmetry of hexagonal graphene flakes.
Row sums give column k=0 of
A338244.
-
(n,k) -> binomial(n,k)*binomial(12,k)+18*binomial(n+1,k)*binomial(10,k-2)+84*binomial(n+2,k)*binomial(8,k-4)+126*binomial(n+3,k)*binomial(6,k-6)+57*binomial(n+4,k)*binomial(4,k-8)+4*binomial(n+5,k)*binomial(2,k-10) +add(4*binomial(n+1+h,k)*binomial(9,k-3)+24*binomial(n+2+h,k)*binomial(7,k-5)+36*binomial(n+3+h,k)*binomial(5,k-7)+14*binomial(n+4+h,k)*binomial(3,k-9),h = 0 .. 1) +add(add(binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k)*binomial(6-2*s,k-6-2*s),s = 0 .. 2),h = 0 .. 2)
Showing 1-6 of 6 results.
Comments