cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047819 a(n) = Product_{i=1..n} ((i+3)*(i+4)*(i+5))/(i*(i+1)*(i+2)).

Original entry on oeis.org

1, 20, 175, 980, 4116, 14112, 41580, 108900, 259545, 572572, 1184183, 2318680, 4331600, 7768320, 13441968, 22535064, 36729945, 58373700, 90684055, 138003404, 206108980, 302588000, 437287500, 622849500, 875343105, 1215006156, 1667110095
Offset: 0

Views

Author

Keywords

Comments

Number of tilings of a <3,n,3> hexagon.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005
Partial sums of A107891. - Peter Bala, Sep 21 2007
Determinant of the 3 X 3 matrix with rows [C(n+3,3) C(n+3,4) C(n+3,5)], [C(n+4,3) C(n+4,4) C(n+4,5)], and [C(n+5,3) C(n+5,4) C(n+5,5)]. - J. M. Bergot, Sep 10 2013

Examples

			G.f. = 1 + 20*x + 175*x^2 + 980*x^3 + 4116*x^4 + 14112*x^5 + 41580*x^6 + ...
		

References

  • O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 2 and p. 105, eq.(ii), K(0a(2,5,n))).

Crossrefs

Third row of array A103905.

Programs

  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)^3*(n+4)^2*(n+5)/8640: seq(a(n),n=0..30); # Emeric Deutsch, Jun 18 2005
  • Mathematica
    a[n_] :=(n + 1)*(n + 2)^2*(n + 3)^3*(n + 4)^2*(n + 5)/8640;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 19 2018, after Emeric Deutsch *)
  • PARI
    {a(n) = if( n<0, 0, binomial(n+5, 5) * binomial(n+4, 3) * (n+3) / 12)}; /* Michael Somos, Nov 14 2002 */
    
  • PARI
    {a(n) = my(s=sign(n+3)); n=abs(n+3)-3; -s/8 * polcoeff( charpoly( matrix(n+3, n+3, i, j, (i-j)^2)), n)}; /* Michael Somos, Nov 14 2002 */

Formula

G.f.: (1 + 10*x + 20*x^2 + 10*x^3 + x^4) / (1 - x)^10. - Michael Somos, Nov 14 2002
a(n) = C(n+3,n+2)*C(n+4,n+1)*C(n+5,n)/12. - Zerinvary Lajos, May 29 2007
a(n-3) = (1/24)*Sum_{1 <= x_1, x_2, x_3 <= n} (det V(x_1,x_2,x_3))^2 = (1/24)*Sum_ {1 <= i,j,k <= n} ((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007
a(n) = -a(-6-n) for all n in Z. - Michael Somos, Dec 26 2016
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 5195/2 - 2160*zeta(3).
Sum_{n>=0} (-1)^n/a(n) = 17205/2 - 9600*log(2) - 1620*zeta(3). (End)

A107915 a(n) = binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4)/75.

Original entry on oeis.org

1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, 26794167400, 44253495000, 71627692500, 113794603650, 177694650315
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
Partial sums of A107917. - Peter Bala, Sep 21 2007

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).

Crossrefs

Programs

  • Maple
    a:=n->(1/75)*binomial(n+4,4)*binomial(n+5,4)*binomial(n+6,4): seq(a(n),n=0..27);
    seq(binomial(n,n-2)*binomial(n+1,n-3)*binomial(n+2,n-4)/(5*3!), n=4..22); # Zerinvary Lajos, May 29 2007
  • Mathematica
    a[n_] := Binomial[n + 4, 4] * Binomial[n + 5, 4] * Binomial[n + 6, 4]/75; Array[a, 25, 0] (* Amiram Eldar, May 29 2022 *)

Formula

a(n) = C(n,n-2)*C(n+1,n-3)*C(n+2,n-4)/(5*3!), n>=4. - Zerinvary Lajos, May 29 2007
a(n-3) = (1/144) * Sum_{1 <= x_1, x_2, x_3 <= n} x_1*x_2*x_3*(det V(x_1,x_2,x_3))^2 = 1/144*sum {1 <= i,j,k <= n} i*j*k*((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007
G.f.: -(x^6+22*x^5+113*x^4+190*x^3+113*x^2+22*x+1)/(x-1)^13. - Colin Barker, Jun 06 2012
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 25200*Pi^2 - 248713.
Sum_{n>=0} (-1)^n/a(n) = 376003 - 430080*log(2) - 64800*zeta(3). (End)

A047835 a(n) = Product_{i=1..n} ((i+4)*(i+5)*(i+6)*(i+7))/(i*(i+1)*(i+2)*(i+3)).

Original entry on oeis.org

1, 70, 1764, 24696, 232848, 1646568, 9343620, 44537922, 184225041, 677352676, 2254684432, 6892441920, 19571505408, 52101067968, 131018862096, 313203587004, 715536058545, 1569305708586, 3316911815140, 6778924352200, 13435361082000
Offset: 0

Views

Author

Keywords

Comments

Number of tilings of a <4,n,4> hexagon.
Partial sums of A133708. - Peter Bala, Sep 21 2007

References

  • O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.

Crossrefs

Fourth row of array A103905.

Programs

  • Maple
    seq(binomial(n,n-1)*binomial(n+1,n-2)*binomial(n+2,n-3)*binomial(n+3,n-4)/(10*4!), n=4..24); # Zerinvary Lajos, May 29 2007
  • Mathematica
    Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)

Formula

a(n) = C(n,n-1)*C(n+1,n-2)*C(n+2,n-3)*C(n+3,n-4)/(10*4!), n >= 4 . - Zerinvary Lajos, May 29 2007
a(n-4) = (1/3456)*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} (det V(x_1,x_2,x_3,x_4))^2 = (1/3456)*Sum_{1 <= i,j,k,l <= n} ((i-j)(i-k)(i-l)(j-k)(j-l)(k-l))^2, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4. - Peter Bala, Sep 21 2007
Empirical g.f.: (x+1)*(x^8 + 52*x^7 + 658*x^6 + 2890*x^5 + 4810*x^4 + 2890*x^3 + 658*x^2 + 52*x + 1)/(1-x)^17. - Colin Barker, Jun 06 2012
Sum_{n>=0} 1/a(n) = 67200*Pi^4 + 5605600*Pi^2 - 185612833/3. - Amiram Eldar, May 29 2022
Showing 1-3 of 3 results.