Original entry on oeis.org
0, 0, 1, 69, 1694, 22932, 208152, 1413720, 7697052, 35194302, 139687119, 493127635, 1577331756, 4637757488, 12679063488, 32529562560, 78917794128, 182184724908, 402332471541, 853769650041, 1747606106554, 3462012537060, 6656436729800, 12452933493000
Offset: 1
-
Join[{0,0,1},Differences[Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,30}]]] (* Harvey P. Dale, Aug 08 2015 *)
A103905
Square array T(n,k) read by antidiagonals: number of tilings of an hexagon.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 20, 20, 4, 1, 70, 175, 50, 5, 1, 252, 1764, 980, 105, 6, 1, 924, 19404, 24696, 4116, 196, 7, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1, 48620, 34763300
Offset: 1
Array begins:
1, 2, 3, 4, 5, 6, ...
1, 6, 20, 50, 105, 196, ...
1, 20, 175, 980, 4116, 14112, ...
1, 70, 1764, 24696, 232848, 1646568, ...
1, 252, 19404, 731808, 16818516, 267227532, ...
...
- Peter J. Forrester and Alex Gamburd, Counting formulas associated with some random matrix averages, arXiv:math/0503002 [math.CO], 2005.
- Anthony J. Guttmann, Aleksandr L. Owczarek and Xavier G. Viennot, Vicious walkers and Young tableaux. I. Without walls, J. Phys. A 31 (1998) 8123-8135.
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- Christian Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507 [math.CO], 2005.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 28.
- Percy A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
-
t[n_, k_] := Product[j!*(j + 2*n)!/(j + n)!^2, {j, 0, k - 1}]; Join[{1}, Flatten[ Table[ t[n - k , k], {n, 1, 10}, {k, 1, n}]]] (* Jean-François Alcover, May 16 2012, from 2nd formula *)
A133815
Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0
Array begins
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 6, 10, ...
1, -1, 3, -6, 20, -50, ...
1, -1, 4, -10, 50, -175, ...
1, 1, 5, 15, 105, 490, ...
1, 1, 6, 21, 196, 1176, ...
As a number triangle, T(n-k,k) gives
1;
1, 1;
1, 1, 1;
1, -1, 2, 1;
1, -1, 3, 3, 1;
1, 1, 4, -6, 6, 1;
1, 1, 5, -10, 20, 10, 1;
1, -1, 6, 15, 50, -50, 20, 1;
-
F:= Floor;
function t(n,k)
if k eq 0 then return 1;
elif k eq 1 then return (-1)^F(n/2);
elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
end if;
end function;
// [[t(n,k): k in [0..10]]: n in [0..10]];
A133815:= func< n,k | t(n-k, k) >;
[A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
-
T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
(* Michael Somos, Apr 03 2021 *)
-
alias(C, binomial);
T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
-
T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
-
def f(k): return (k+1)//2
def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
def A133815(n,k): return t(n-k, k)
flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023
Showing 1-3 of 3 results.
Comments