cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133708 First differences of A047835.

Original entry on oeis.org

0, 0, 1, 69, 1694, 22932, 208152, 1413720, 7697052, 35194302, 139687119, 493127635, 1577331756, 4637757488, 12679063488, 32529562560, 78917794128, 182184724908, 402332471541, 853769650041, 1747606106554, 3462012537060, 6656436729800, 12452933493000
Offset: 1

Views

Author

Peter Bala, Sep 21 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,1},Differences[Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,30}]]] (* Harvey P. Dale, Aug 08 2015 *)

Formula

In terms of Vandermonde determinants, a(n) = 1/864*sum {1 <= x_1,x_2,x_3 <= n} (x_1*x_2*x_3)^2*(det V(x_1,x_2,x_3))^2 = 1/864 *sum {1 <= i,j,k <= n} (i*j*k*(i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. a(n) = (n-2)*(n-1)^2*n^3*(n+1)^3*(n+2)^2*(n+3)*(n^2+n+3)*(2n+1)/108864000.
Empirical G.f.: x^3*(x+1)*(x^8+52*x^7+658*x^6+2890*x^5+4810*x^4+2890*x^3+658*x^2+52*x+1)/(x-1)^16. [Colin Barker, Jun 06 2012]

A103905 Square array T(n,k) read by antidiagonals: number of tilings of an hexagon.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 20, 4, 1, 70, 175, 50, 5, 1, 252, 1764, 980, 105, 6, 1, 924, 19404, 24696, 4116, 196, 7, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1, 48620, 34763300
Offset: 1

Views

Author

Ralf Stephan, Feb 22 2005

Keywords

Comments

As a square array, T(n,k) = number of all k-watermelons without a wall of length n. - Steven Finch, Mar 30 2008

Examples

			Array begins:
  1,   2,     3,      4,        5,         6, ...
  1,   6,    20,     50,      105,       196, ...
  1,  20,   175,    980,     4116,     14112, ...
  1,  70,  1764,  24696,   232848,   1646568, ...
  1, 252, 19404, 731808, 16818516, 267227532, ...
  ...
		

Crossrefs

Rows include A002415, A047819, A047835, A047831.
Columns include A000984 and A000891.
Main diagonal is A008793.

Programs

  • Mathematica
    t[n_, k_] := Product[j!*(j + 2*n)!/(j + n)!^2, {j, 0, k - 1}]; Join[{1}, Flatten[ Table[ t[n - k , k], {n, 1, 10}, {k, 1, n}]]] (* Jean-François Alcover, May 16 2012, from 2nd formula *)

Formula

T(n, k) = [V(2n+k-1)V(k-1)V(n-1)^2]/[V(2n-1)V(n+k-1)^2], with V(n) the superfactorial numbers (A000178).
T(n, k) = Prod[j=0..k-1, j!(j+2n)!/(j+n)!^2 ].
T(n, k) = Prod[h=1..n, Prod[i=1..k, Prod[j=1..n, (h+i+j-1)/(h+i+j-2) ]]].
T(n, k) = Prod[i=1..k, Prod[j=n+1..2n+1, i+j]/Prod[j=0..n, i+j]]; - Paul Barry, Jun 13 2006
Conjectural formula as a sum of squares of Vandermonde determinants: T(n,k) = 1/((1!*2! ... *(n-1)!)^2*n!)* sum {1 <= x_1, ..., x_n <= k} (det V(x_1, ..., x_n))^2, where V(x_1, ..., x_n) is the Vandermonde matrix of order n. Compare with A133112. - Peter Bala, Sep 18 2007
For k >= 1, T(n,k)=det(binomial(2*n,n+i-j))1<=i,j<=k [Krattenhaller, Theorem 4].
Let H(n) = product {k = 1..n-1} k!. Then for a,b,c nonnegative integers (H(a)*H(b)*H(c)*H(a+b+c))/(H(a+b)*H(b+c)*H(c+a)) is an integer [MacMahon, Section 4.29 with x -> 1]. Setting a = b = n and c = k gives the entries for this table. - Peter Bala, Dec 22 2011

A133815 Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0

Views

Author

Paul Barry, Sep 24 2007

Keywords

Comments

T(n+1,k) is the Hankel transform of binomial(n+k, floor((n+k)/2)).
Even-indexed columns count tilings of hexagons: A002415 (<2,n,2>), A047819 (<3,n,3>), A047835 (<4,n,4>), etc.

Examples

			Array begins
  1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10, ...
  1,   -1,    3,   -6,   20,  -50, ...
  1,   -1,    4,  -10,   50, -175, ...
  1,    1,    5,   15,  105,  490, ...
  1,    1,    6,   21,  196, 1176, ...
As a number triangle, T(n-k,k) gives
  1;
  1,   1;
  1,   1,   1;
  1,  -1,   2,   1;
  1,  -1,   3,   3,   1;
  1,   1,   4,  -6,   6,   1;
  1,   1,   5, -10,  20,  10,   1;
  1,  -1,   6,  15,  50, -50,  20,   1;
		

Crossrefs

Programs

  • Magma
    F:= Floor;
    function t(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return (-1)^F(n/2);
      elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
      else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
      end if;
    end function;
    // [[t(n,k): k in [0..10]]: n in [0..10]];
    A133815:= func< n,k | t(n-k, k) >;
    [A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
    
  • Mathematica
    T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
    (* Michael Somos, Apr 03 2021 *)
  • PARI
    alias(C, binomial);
    T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
    tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
    
  • PARI
    T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
    
  • SageMath
    def f(k): return (k+1)//2
    def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
    def A133815(n,k): return t(n-k, k)
    flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023

Formula

T(n,k) = if(k mod 2 = 0, Product_{j=0..(k-2)/2} C(n+k/2+j,k/2) / C(k/2+j,k/2), (cos(Pi*n/2) + sin(Pi*n/2))*Product_{j=0..(k-3)/2} C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)).
Showing 1-3 of 3 results.