cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107963 a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(5*n^2 + 19*n + 15)/360.

Original entry on oeis.org

1, 13, 73, 273, 798, 1974, 4326, 8646, 16071, 28171, 47047, 75439, 116844, 175644, 257244, 368220, 516477, 711417, 964117, 1287517, 1696618, 2208690, 2843490, 3623490, 4574115, 5723991, 7105203, 8753563, 10708888, 13015288, 15721464
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).

Crossrefs

Equals third right hand column of A161739 (RSEG2 triangle). - Johannes W. Meijer, Jun 18 2009

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15)/360: n in [0..30]]; // Vincenzo Librandi, Apr 23 2017
  • Maple
    a:=n->(1/360)*(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15): seq(a(n),n=0..36);
  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 13, 73, 273, 798, 1974, 4326}, 40] (* Vincenzo Librandi, Apr 23 2017 *)
  • PARI
    a(n)=(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15)/360 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

G.f.: ( -1-6*x-3*x^2 ) / (x-1)^7 . - R. J. Mathar, Feb 16 2011
a(n) = Sum_{i=0..n+1} A000217(i)*A000292(i) with a(-1)=0. - Bruno Berselli, Jul 20 2015