cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107979 a(n) = 4*a(n-1) + 2*a(n-2) for n>1, with a(0)=2, a(1)=9.

Original entry on oeis.org

2, 9, 40, 178, 792, 3524, 15680, 69768, 310432, 1381264, 6145920, 27346208, 121676672, 541399104, 2408949760, 10718597248, 47692288512, 212206348544, 944209971200, 4201252581888, 18693430269952, 83176226243584
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
This is the case r=2 of the generalized Pell numbers as defined in Bród. - Michel Marcus, Oct 28 2020

Examples

			G.f. = 2 + 9*x + 40*x^2 + 178*x^3 + 792*x^4 + 3524*x^5 + 15680*x^6 + 69768*x^7 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 78).

Crossrefs

Cf. A021001. - R. J. Mathar, Aug 24 2008

Programs

  • Maple
    a[0]:=2: a[1]:=9: for n from 2 to 26 do a[n]:=4*a[n-1]+2*a[n-2] od: seq(a[n],n=0..26);
  • Mathematica
    LinearRecurrence[{4,2},{2,9},30] (* or *) CoefficientList[Series[(-x-2)/(2x^2+4x-1),{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
    a[ n_] := With[{m = n + 2}, If[ m < 0, -(-2)^m, 1] SeriesCoefficient[ x / (2 - 8 x - 4 x^2), {x, 0, Abs@m}]]; (* Michael Somos, May 23 2014 *)
    a[ n_] := With[{m = n + 2, r = Sqrt[6]}, If[ m < 0, -(-2)^m, Sign@m] Expand[(2 + r)^(Abs@m) / (2 r)][[1]]]; (* Michael Somos, May 23 2014 *)
  • PARI
    {a(n) = my(m = n+2); if( m<0, -(-2)^m, 1) * polcoeff( x / (2 - 8*x - 4*x^2) + x * O(x^abs(m)), abs(m))}; /* Michael Somos, May 23 2014 */
    
  • PARI
    {a(n) = my(r = 2 + quadgen(24)); imag( (1 + 2*r) * r^n)}; /* Michael Somos, May 23 2014 */
    
  • PARI
    a(n)=([0,1; 2,4]^n*[2;9])[1,1] \\ Charles R Greathouse IV, Feb 07 2017

Formula

From R. J. Mathar, Aug 24 2008: (Start)
O.g.f.: (2+x)/(1-4x-2x^2).
a(n) = 2*A090017(n) + A090017(n-1). (End)
a(n) = 1/12*((sqrt(6)-3)(-(2-sqrt(6))^n) + (3+sqrt(6))(2+sqrt(6))^n). - Harvey P. Dale, Jun 21 2011
a(n) = A000129(n+2) + Sum_{k=1..n} A000129(k+1)*a(n-k). - Ralf Stephan, May 23 2014