A107985 Triangle read by rows: T(n,k) = (k+1)*(n+2)*(n-k+1)/2 for 0 <= k <= n.
1, 3, 3, 6, 8, 6, 10, 15, 15, 10, 15, 24, 27, 24, 15, 21, 35, 42, 42, 35, 21, 28, 48, 60, 64, 60, 48, 28, 36, 63, 81, 90, 90, 81, 63, 36, 45, 80, 105, 120, 125, 120, 105, 80, 45, 55, 99, 132, 154, 165, 165, 154, 132, 99, 55, 66, 120, 162, 192, 210, 216, 210, 192, 162, 120, 66
Offset: 0
Examples
Triangle begins: 1; 3, 3; 6, 8, 6; 10, 15, 15, 10; 15, 24, 27, 24, 15; ...
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,2,-l)}).
Links
- Volodymyr Mazorchuk and Xiaoyu Zhu, Combinatorics of infinite rank module categories over finite dimensional sl3-modules in Lie-algebraic context, arXiv:2501.00291 [math.RT], 2024. See page 9.
Programs
-
Maple
T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n-k+1)/2 else 0 fi end: for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_,k_]:= (k+1)(n+2)(n-k+1)/2; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Jan 06 2025 *)
-
Python
from math import isqrt, comb def A107985(n): a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) b = n-comb(a,2) return (b+1)*(a+1)*(a-b)>>1 # Chai Wah Wu, Jun 14 2025
Formula
T(n,n-k) = T(n,k); T(2n,n) = (n+1)^3.
G.f.: (1 - x^2*y)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Oct 01 2023
Comments