cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A287775 Positions of 0 in A287772; complement of A050140 (conjectured and proved).

Original entry on oeis.org

2, 3, 6, 7, 9, 10, 13, 14, 17, 18, 20, 21, 24, 25, 27, 28, 31, 32, 35, 36, 38, 39, 42, 43, 46, 47, 49, 50, 53, 54, 56, 57, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 78, 79, 82, 83, 85, 86, 89, 90, 93, 94, 96, 97, 100, 101, 103, 104, 107, 108, 111, 112, 114
Offset: 1

Views

Author

Clark Kimberling, Jun 03 2017

Keywords

Comments

-1 < n*r - a(n) < 1 for n >= 1, where r = (5 + sqrt(5))/4.
From Michel Dekking, Dec 28 2017: (Start)
Let (d(n)) be the sequence of first differences: d(n)=a(n+1)-a(n).
CLAIM: d(n) = A108103(n+1) for n=1,2,….
Proof: As a word A287772 = 100110010011001100100110010011... obtained by substituting 0->1, 1->00 in the Fibonacci word F=0100101001001010010100...
This implies that A287772 is a concatenation of 00’s separated by 1’s and 11’s. Moreover, a 0110 occurs iff 1001 occurs in F, and a 010 occurs iff 101 occurs in F. Note also that occurrence of a 00 in A287772 yields a d(n)=1 (and so every other letter in d is a 1), occurrence of a 010 yields a d(n)=2, and occurrence of a 0110 yields a d(n)=3. Since the 1001’s and 101’s occur in 1F according to F itself with 1 prepended (see A001468 and A282162), we must have d(n)=A108103(n+1). (End)

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 10] (* A003849 *)
    w = StringJoin[Map[ToString, s]]
    w1 = StringReplace[w, {"0" -> "1", "1" -> "00"}]
    st = ToCharacterCode[w1] - 48    (* A287772 *)
    Flatten[Position[st, 0]]  (* A287775 *)
    Flatten[Position[st, 1]]  (* A050140 conjectured *)
  • Python
    from math import isqrt
    def A287775(n):
        def f(x): return n+(r:=isqrt(x**2//5))+((isqrt(5*(r+1)**2)+r+1&-2)-r-1<=x)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, May 05 2025

A095345 a(n) is the length of the n-th run in A095346.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

This is the first sequence reached in the infinite process described in the A066983 comment line.
(a(n)) is a morphic sequence, i.e., a letter to letter projection of a fixed point of a morphism. The morphism is 1->121,2->3,1,3->313. The fixed point is the fixed point 121312131312... starting with 1. The letter-to-letter map is 1->1, 2->1, 3->3. See also the comments in A108103. - Michel Dekking, Jan 06 2018

Examples

			A095346 begins: 3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,... and length or runs of 3's and 1's are 1,1,1,3,1,1,1,3,1,3,...
		

References

  • F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.

Crossrefs

Formula

a(n)=3 if n=2*ceiling(k*phi) for some k where phi=(1+sqrt(5))/2, otherwise a(n)=1. [Benoit Cloitre, Mar 02 2009]

A095346 a(n) is the length of the n-th run of A095345.

Original entry on oeis.org

3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

This is the second sequence reached in the infinite process described in A066983 comment line.
(a(n)) is a morphic sequence, i.e., a letter to letter projection of a fixed point of a morphism. The morphism is 1->121,2->3,1,3->313. The fixed point is the fixed point 3131213131213... starting with 3. The letter-to-letter map is 1->1, 2->1, 3->3. See also COMMENTS of A108103. - Michel Dekking, Jan 06 2018

Examples

			A095345 begins : 1,1,1,3,1,1,1,3,1,3,...,.. and length or runs of 1's and 3's are 3,1,3,1,1,1,...
		

References

  • F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.

Crossrefs

Formula

a(n)=3 if n=1+2*floor(phi*k) for some k where phi=(1+sqrt(5))/2, else a(n)=1. [Benoit Cloitre, Mar 02 2009]

A294203 Number of partitions of n into distinct Lucas parts (A000204) greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 3, 0, 0, 2, 2, 0, 0, 3, 0, 0, 1, 3, 0, 0, 3, 2, 0, 0, 4, 0, 0, 2, 3, 0, 0, 3, 1, 0, 0, 4, 0, 0, 3, 3, 0, 0, 5, 0, 0, 2, 4, 0, 0, 4, 2, 0, 0, 5, 0, 0, 3, 3, 0, 0, 4, 0, 0, 1, 4, 0, 0, 4, 3, 0, 0, 6, 0, 0, 3, 5, 0, 0, 5, 2, 0, 0, 6, 0, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 24 2017

Keywords

Comments

Convolution of the sequences A003263 and A033999.
Positions of 0: 1, 2, 5, 6, 8, 9, 12, 13, ... = A287775(n) - 1 (conjecture).
From Michel Dekking, Dec 30 2017: (Start)
Proof of the 'positions of 0' conjecture: let (z(n))=1,2,5,6,8,9,12,... be the positions of 0. The crucial observation is that if a number n is the sum of distinct Lucas parts greater than 1, then n+1 is a sum of Lucas parts. This implies that (z(2n))=2,6,9,13,... is the sequence of numbers A054770 that are not a sum of Lucas numbers. We see there that Ian Agol proved that b(n):=A054770(n)=floor(phi*n)+2n-1. But then the sequence of first differences (b(n+1)-b(n)) equals the Fibonacci word on the alphabet {4,3}, yielding that (z(2n)-z(2n-1)) equals the Fibonacci word on {3,2}, and we already know that z(2n+1)-z(2n)=1 for all n. On the other hand, A287775 has the same first difference sequence given by A108103. Since A287775(1)=2, the conjecture follows. (End)
Positions of 1: 0, 3, 4, 10, 15, 28, 44, 75, ... = A001350(n+1) - 1 (conjecture).

Examples

			a(7) = 2 because we have [7] and [4, 3].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1 + x^LucasL[k], {k, 2, 15}], {x, 0, 100}], x]

Formula

G.f.: Product_{k>=2} (1 + x^Lucas(k)).

A267860 An infinite ternary 3-Fibonacci sequence (replace each 00 factor of the Fibonacci word with 020).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1
Offset: 0

Views

Author

Mahdi Saleh, Apr 07 2016

Keywords

Comments

A word constructed by replacing each 00 factor of the Fibonacci word (A003849) with 020. The obtained ternary sequence is a word with Sturmian erasures (by removing each word,the obtained binary sequence is Sturmian)[1]. By removing each of 0's or 2's, the set of replacements on the Fibonacci word, is equal to the morphisms of deriving the Fibonacci word [2]. So the obtained binary word by removing each of 0's,1's or 2's is the Fibonacci word. Since the slope of the sequential projection (sending for example one letter to 1 and all the others to 0) is 1, the factor complexity of this ternary word for each integer n>0, is n+2.[3]
The binary sequence obtained by removing all 0's from the 3-Fibonacci word: 1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,...
From Michel Dekking, Oct 19 2016: (Start)
The sequence (a(n)) is fixed point of the morphism zeta given by zeta: 0->01, 1->02, 2->epsilon.
Here epsilon is the empty word. To see this, code the 0’s in the Fibonacci sequence followed by 0 by 5, and the 0’s followed by 1 by 6. Then add 2 after 5. This gives the morphism 1->52, 5->61, 6->61, 2->epsilon. Then injectivize, i.e., map 5 and 6 to 0.
The sequence (a(n)) is related to A108103. Let theta be the standard form of zeta: theta(1)=12, theta(2)=13, theta(3)=epsilon. Let psi be the morphism generating the version of A108103 with 2 and 3 interchanged, psi: 1->2, 2->131, 3->1. Then the unique fixed point of theta is different from the fixed points of psi, but theta and psi generate the same language, i.e., arbitrarily long words occurring in the fixed point of theta occur in the fixed points of psi. This is a nontrivial exercise (prove that 2 theta^{2n}(1) = psi^{2n}(2) 13 for all n>0).
The sequence (a(n)) is not related to A270788, which might be called the ternary Fibonacci sequence. The dynamical system generated by (a(n)) has an eigenvalue -1, whereas the system generated by A270788 is isomorphic to the Fibonacci dynamical system. (End)
The asymptotic density of the occurrences of 0, 1, and 2 is 1/2, 1/(2*phi) = A019827, and 1/(2*phi^2) = A187426 / 10, respectively, where phi is the golden ratio (A001622). The asymptotic mean of this sequence is (3-phi)/2 (A187798). - Amiram Eldar, May 28 2024

Crossrefs

Programs

  • Mathematica
    SubstitutionSystem[{0->{0,1}, 1->{0,2}, 2->{}}, {0}, {10}][[1]] (* Paolo Xausa, May 17 2024 *)

A317203 Fixed under the morphism 1 -> 132, 2 -> 1, 3 -> 3, starting with 31.

Original entry on oeis.org

3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2018

Keywords

Comments

a(n) = Pi(A108103(n+2)), where Pi is the permutation Pi(1)=3, Pi(2)=2, Pi(3)=1. For a proof, see my link. - Michel Dekking, Dec 28 2019

Extensions

Definition amended by Georg Fischer, May 28 2021
Showing 1-6 of 6 results.