A107999 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.
37, 101, 141, 189, 197, 269, 325, 333, 349, 373, 381, 389, 405, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 909, 925, 933, 973, 997, 1053, 1149, 1157, 1173, 1213, 1269, 1293, 1301, 1325, 1389, 1405, 1421, 1445, 1485, 1605, 1613, 1701, 1717
Offset: 1
Keywords
References
- C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.
Links
- A. Cayley, Note sur l'équation x^2 - D*y^2 = +-4, D=5 (mod. 8), J. Reine Angew. Math. 53 (1857) 369-371.
- S. R. Finch, Class number theory [Cached copy, with permission of the author]
- N. Ishii, P. Kaplan and K. S. Williams, On Eisenstein's problem, Acta Arith. 54 (1990) 323-345.
Extensions
More terms from Jinyuan Wang, Sep 08 2021