cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108166 Semiprimes p*q where both p and q are primes of the form 6n-1 (A007528).

Original entry on oeis.org

25, 55, 85, 115, 121, 145, 187, 205, 235, 253, 265, 289, 295, 319, 355, 391, 415, 445, 451, 493, 505, 517, 529, 535, 565, 583, 649, 655, 667, 685, 697, 745, 781, 799, 835, 841, 865, 895, 901, 913, 943, 955, 979, 985, 1003, 1081, 1111, 1135, 1165, 1177, 1189
Offset: 1

Views

Author

Jonathan Vos Post, Jun 13 2005

Keywords

Comments

Every semiprime not divisible by 2 or 3 must be in one of these three disjoint sets:
A108164 - the product of two primes of the form 6n + 1 (A002476),
A108166 - the product of two primes of the form 6n - 1 (A007528),
A108172 - the product of a prime of the form 6n + 1 and a prime of the form 6n - 1.
The product of two primes of the form 6n - 1 is a semiprime of the form 6n + 1.

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Programs

  • Mathematica
    Module[{nn = 150, pf}, pf = Select[6Range[nn] - 1, PrimeQ]; Take[Union[Times@@@Tuples[pf, 2]], nn/2]] (* Harvey P. Dale, Dec 09 2013 *)
    Select[6Range[200] + 1, PrimeOmega[#] == 2 && Mod[FactorInteger[#][[1, 1]], 6] == 5 &] (* Alonso del Arte, Aug 24 2017 *)

Formula

{a(n)} = {p*q where both p and q are in A007528}.

Extensions

Edited and extended by Ray Chandler, Oct 15 2005