A108195 a(n) = n^2 + 5*n - 1.
5, 13, 23, 35, 49, 65, 83, 103, 125, 149, 175, 203, 233, 265, 299, 335, 373, 413, 455, 499, 545, 593, 643, 695, 749, 805, 863, 923, 985, 1049, 1115, 1183, 1253, 1325, 1399, 1475, 1553, 1633, 1715, 1799, 1885, 1973, 2063, 2155, 2249, 2345, 2443, 2543, 2645, 2749
Offset: 1
Examples
The Cross of Lorraine having n=2 crossbeams consists of a(2)=13 squares +---+ | + | +---+---+---+ | + | + | + | +---+---+---+ | + | +---+---+---+---+---+ | + | + | + | + | + | +---+---+---+---+---+ | + | +---+ | + | +---+ | + | +---+
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Gaullist Cross.
- Eric Weisstein's World of Mathematics, Greek Cross.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Jun 11 2014
-
Maple
with (combinat):seq(fibonacci(3, n)+n-8, n=3..51); # Zerinvary Lajos, Jun 07 2008
-
Mathematica
CoefficientList[Series[(5 + 3 x - x^2 - 5 x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2014 *) Array[#^2 + 5 # - 1 &, 49] (* Michael De Vlieger, Jul 12 2017 *)
-
PARI
a(n)=n^2+5*n-1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
For n > 1: a(n) = A176271(n+2,n-1). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) + 4, with n > 1, a(1)=5. - Vincenzo Librandi, Nov 13 2010
G.f.: x*(5 - 2*x - x^2)/(1 - x)^3. - Vincenzo Librandi, Jun 11 2014
From Elmo R. Oliveira, Nov 01 2024: (Start)
E.g.f.: exp(x)*(x^2 + 6*x - 1) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Sum_{n>=1} 1/a(n) = 47/35 + tan(sqrt(29)*Pi/2)*Pi/sqrt(29). - Amiram Eldar, May 12 2025
Comments