A108267 Triangle read by rows, T(n, k) = [x^k] (1-x)^(n+1)*Sum_{j=0..n} binomial(n + n*j + j, n*j + j)*x^j.
1, 1, 1, 1, 7, 1, 1, 31, 31, 1, 1, 121, 381, 121, 1, 1, 456, 3431, 3431, 456, 1, 1, 1709, 26769, 60691, 26769, 1709, 1, 1, 6427, 193705, 848443, 848443, 193705, 6427, 1, 1, 24301, 1343521, 10350421, 19610233, 10350421, 1343521, 24301, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 7, 1; 1, 31, 31, 1; 1, 121, 381, 121, 1; 1, 456, 3431, 3431, 456, 1; 1, 1709, 26769, 60691, 26769, 1709, 1; 1, 6427, 193705, 848443, 848443, 193705, 6427, 1; ... G.f. of row 3: (1 + 31*x + 31*x^2 + x^3) = (1-x)^4*(1 + 35*x + 165*x^2 + 455*x^3 + ... + C(4*j+3,4*j)*x^j + ...).
Links
- M. Bayer, B. Goeckner, S. J. Hong, T. McAllister, M. Olsen, C. Pinckney, J. Vega and M. Yip, Lattice polytopes from Schur and symmetric Grothendieck polynomials, Electronic Journal of Combinatorics, Volume 28, Issue 2 (2021). See Proposition 53 and Table 1.
- Tanay Wakhare, Iterated Entropy Derivatives and Binary Entropy Inequalities, arXiv:2312.14743 [cs.IT], 2023.
- Tanay Wakhare, Two Studies of Constraints in High Dimensions: Entropy Inequalities and the Randomized Symmetric Binary Perceptron, Master's Thesis, MIT (2024). See p. 22.
- Raphael Yuster, Almost k-union closed set systems, arXiv:2302.12276 [math.CO], 2023, p. 8.
Programs
-
Maple
p := n -> (1-x)^(n+1)*add(binomial(n + n*j + j, n*j + j)*x^j, j = 0..n): seq(print(seq(coeff(p(n), x, k), k = 0..n)), n = 0..8); # Peter Luschny, Nov 02 2022
-
Mathematica
T[n_, k_] := Coefficient[(1 - x)^(n + 1)* Sum[Binomial[n + n*j + j, n*j + j]*x^j, {j, 0, n}], x, k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2021 *)
-
PARI
T(n,k)=polcoeff((1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),k)
Formula
T(n, 1) = A048775(n) = binomial(2*n + 1, n + 1) - (n + 1).
Sum_{k=0..n} T(n, k) = A000169(n) = (n + 1)^n.
Sum_{k=0..n} T(n, k)*2^k = A108292(n).
From Thomas Anton, Jan 05 2023: (Start)
T(n, k) = Sum_{i=0..k} (-1)^i*binomial(n + 1, i)*binomial(n+(n+1)*(k-i), n).
T(n, k) = T(n, n-k).
(End)
Comments