A108291
Triangle, read by rows, resulting from the matrix product of triangle A108267 with Pascal's triangle (A007318).
Original entry on oeis.org
1, 2, 1, 9, 9, 1, 64, 96, 34, 1, 625, 1250, 750, 125, 1, 7776, 19440, 16470, 5265, 461, 1, 117649, 352947, 386561, 184877, 35329, 1715, 1, 2097152, 7340032, 9863168, 6307840, 1913408, 232288, 6434, 1, 43046721, 172186884, 274223556, 220016574
Offset: 0
Triangle begins:
1;
2,1;
9,9,1;
64,96,34,1;
625,1250,750,125,1;
7776,19440,16470,5265,461,1;
117649,352947,386561,184877,35329,1715,1;
2097152,7340032,9863168,6307840,1913408,232288,6434,1; ...
-
{T(n,k)=local(X=x+x*O(x^(n-k))); polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),n-k)}
Original entry on oeis.org
1, 31, 381, 3431, 26769, 193705, 1343521, 9091270, 60632419, 401001030, 2639871326, 17339260251, 113792427233, 746807661549, 4903854042841, 32227106641988, 211992209767971, 1395903036647155, 9200826759772935
Offset: 2
-
a(n)=polcoeff((1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),2)
A060543
Triangle, read by antidiagonals, where T(n,k) = C(n+n*k+k, n*k+k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 5, 1, 1, 35, 28, 7, 1, 1, 126, 165, 55, 9, 1, 1, 462, 1001, 455, 91, 11, 1, 1, 1716, 6188, 3876, 969, 136, 13, 1, 1, 6435, 38760, 33649, 10626, 1771, 190, 15, 1, 1, 24310, 245157, 296010, 118755, 23751, 2925, 253, 17, 1, 1, 92378, 1562275
Offset: 0
row 1: (2*n+1)/1!
row 2: (3*n+1)*(3*n+2)/2!
row 3: (4*n+1)*(4*n+2)*(4*n+3)/3!
row 4: (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/4!
row 5: (6*n+1)*(6*n+2)*(6*n+3)*(6*n+4)*(6*n+5)/5!.
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,10,28,55,91,136,190,253,325,406,496,...
1,35,165,455,969,1771,2925,4495,6545,...
1,126,1001,3876,10626,23751,46376,82251,...
1,462,6188,33649,118755,324632,749398,...
1,1716,38760,296010,1344904,4496388,...
-
T(n,k)=binomial(n+n*k+k,n*k+k)
-
{ i=0; write("b060543.txt", "0 1"); for (m=0, 20, for (k=0, m + 1, n=m - k + 1; write("b060543.txt", i++, " ", binomial(n + n*k + k, n*k + k))); ) } \\ Harry J. Smith, Jul 06 2009
A108290
Triangle, read by rows, such that row n equals the inverse binomial transform of row n of table A060543, where A060543(n,k) = C(n+n*k+k, n*k+k).
Original entry on oeis.org
1, 1, 2, 1, 9, 9, 1, 34, 96, 64, 1, 125, 750, 1250, 625, 1, 461, 5265, 16470, 19440, 7776, 1, 1715, 35329, 184877, 386561, 352947, 117649, 1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152, 1, 24309, 1513656, 18921924, 92365758, 220016574
Offset: 0
BINOMIAL[1, 9, 9] = {1, 10, 28, 55, 91, 136, 190, 253, ...}.
BINOMIAL[1, 34, 96, 64] = {1, 35, 165, 455, 969, 1771, 2925, ...}.
BINOMIAL[1, 125, 750, 1250, 625] = {1, 126, 1001, 3876, 10626, ...}.
Triangle begins:
1;
1, 2;
1, 9, 9;
1, 34, 96, 64;
1, 125, 750, 1250, 625;
1, 461, 5265, 16470, 19440, 7776;
1, 1715, 35329, 184877, 386561, 352947, 117649;
1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152; ...
-
{T(n,k)=local(X=x+x*O(x^k)); polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),k)}
Original entry on oeis.org
1, 3, 19, 195, 2751, 49413, 1079079, 27760323, 822299383, 27565191753, 1031671508495, 42643092165765, 1929325374428791, 94835735736471369, 5032700868665421519, 286770182910733076163, 17463186681730290301671
Offset: 0
-
a(n)=local(X=x+x*O(x^n));sum(k=0,n, polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),k))
-
a(n)=sum(k=0,n,2^k*polcoeff( (1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),k))
A108288
Main diagonal of table A060543; a(n) = C((n+1)^2-1, n*(n+1)).
Original entry on oeis.org
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
Offset: 0
A108289
Antidiagonal sums of table A060543.
Original entry on oeis.org
1, 2, 5, 17, 72, 357, 2022, 12900, 91448, 711180, 6004981, 54619489, 531854438, 5515551251, 60642234815, 704106298738, 8603658260904, 110306422692488, 1479905106340895, 20727595895871297, 302423908621734606
Offset: 0
A333829
Triangle read by rows: T(n,k) is the number of parking functions of length n with k strict descents. T(n,k) for n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 2, 1, 5, 10, 1, 14, 73, 37, 1, 42, 476, 651, 126, 1, 132, 2952, 8530, 4770, 422, 1, 429, 17886, 95943, 114612, 31851, 1422, 1, 1430, 107305, 987261, 2162033, 1317133, 202953, 4853, 1, 4862, 642070, 9613054, 35196634, 39471355, 13792438, 1262800, 16786, 1
Offset: 1
The triangle T(n,k) begins:
n/k 0 1 2 3 4 5
1 1
2 2 1
3 5 10 1
4 14 73 37 1
5 42 476 651 126 1
6 132 2952 8530 4770 422 1
...
The 10 parking functions of length 3 with 1 strict descent are: [[1, 2, 1], [2, 1, 1], [1, 3, 1], [3, 1, 1], [2, 1, 2], [2, 2, 1], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]].
- Ari Cruz, Pamela E. Harris, Kimberly J. Harry, Jan Kretschmann, Matt McClinton, Alex Moon, John O. Museus, and Eric Redmon, On some discrete statistics of parking functions, arXiv:2312.16786 [math.CO], 2023.
- Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
-
var('z,t')
assume(0
-
# using[latte_int from LattE]
# Install with "sage -i latte_int".
# Another method is to compute the Ehrhart h^*-polynomial of a polytope.
var('z,t')
def Tpol(n):
p = Polyhedron( NonDecreasingParkingFunctions(n+1) ).ehrhart_polynomial()
return expand(factor( (1-z)**(n+1) * sum( p * z**t , t , 0 , oo ) ))
def T(n,k):
return Tpol(n).list()[n-1-k]
Showing 1-8 of 8 results.
Comments