A108290
Triangle, read by rows, such that row n equals the inverse binomial transform of row n of table A060543, where A060543(n,k) = C(n+n*k+k, n*k+k).
Original entry on oeis.org
1, 1, 2, 1, 9, 9, 1, 34, 96, 64, 1, 125, 750, 1250, 625, 1, 461, 5265, 16470, 19440, 7776, 1, 1715, 35329, 184877, 386561, 352947, 117649, 1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152, 1, 24309, 1513656, 18921924, 92365758, 220016574
Offset: 0
BINOMIAL[1, 9, 9] = {1, 10, 28, 55, 91, 136, 190, 253, ...}.
BINOMIAL[1, 34, 96, 64] = {1, 35, 165, 455, 969, 1771, 2925, ...}.
BINOMIAL[1, 125, 750, 1250, 625] = {1, 126, 1001, 3876, 10626, ...}.
Triangle begins:
1;
1, 2;
1, 9, 9;
1, 34, 96, 64;
1, 125, 750, 1250, 625;
1, 461, 5265, 16470, 19440, 7776;
1, 1715, 35329, 184877, 386561, 352947, 117649;
1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152; ...
-
{T(n,k)=local(X=x+x*O(x^k)); polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),k)}
A108288
Main diagonal of table A060543; a(n) = C((n+1)^2-1, n*(n+1)).
Original entry on oeis.org
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
Offset: 0
A108289
Antidiagonal sums of table A060543.
Original entry on oeis.org
1, 2, 5, 17, 72, 357, 2022, 12900, 91448, 711180, 6004981, 54619489, 531854438, 5515551251, 60642234815, 704106298738, 8603658260904, 110306422692488, 1479905106340895, 20727595895871297, 302423908621734606
Offset: 0
A060544
Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.
Original entry on oeis.org
1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ignacio Larrosa Cañestro, Hexágono y estrella determinados por tres pares de cevianas simétricas, (java applet).
- Al Cugo et al., Marion's theorem, The Mathematics Teacher 86 (1993) p. 619.
- John Elias, Illustration of Initial Terms
- F. Pollock, On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders, Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
- Eric Weisstein's World of Mathematics, Alkane Graph
- Eric Weisstein's World of Mathematics, Graph Path
- Eric Weisstein's World of Mathematics, Marion's Theorem
- Eric Weisstein's World of Mathematics, Wiener Sum Index
- Index entries for two-way infinite sequences
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
-
[(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
-
H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
-
Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
-
a(n)=(3*n-1)*(3*n-2)/2
-
[(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019
Formulas by Paul Berry corrected for offset 1 by
Wolfdieter Lang, Jan 30 2015
A060540
Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 10, 35, 126, 462, ...
1, 15, 280, 5775, 126126, 2858856, ...
1, 105, 15400, 2627625, 488864376, 96197645544, ...
1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
...
- Seiichi Manyama, Antidiagonals n = 1..50, flattened (first 20 antidiagonals from Harry J. Smith)
- Tom Copeland, Calculus, Combinatorics, and Geometry Underlying OEIS A060540, and the Exponential Formula, 2021.
- Nattawut Phetmak and Jittat Fakcharoenphol, Uniformly Generating Derangements with Fixed Number of Cycles in Polynomial Time, Thai J. Math. (2023) Vol. 21, No. 4, 899-915. See pp. 901, 914.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 13.
Cf.
A000217,
A000292,
A000332,
A000389,
A000579,
A000580,
A007318,
A036040,
A099174,
A133314,
A132440,
A135278 (associations in Copeland link).
-
T[n_, k_] := (n*k)!/(k!^n*n!);
Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009
A060545
a(n) = binomial(n^2, n)/n.
Original entry on oeis.org
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
Offset: 1
A108267
Triangle read by rows, T(n, k) = [x^k] (1-x)^(n+1)*Sum_{j=0..n} binomial(n + n*j + j, n*j + j)*x^j.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 31, 31, 1, 1, 121, 381, 121, 1, 1, 456, 3431, 3431, 456, 1, 1, 1709, 26769, 60691, 26769, 1709, 1, 1, 6427, 193705, 848443, 848443, 193705, 6427, 1, 1, 24301, 1343521, 10350421, 19610233, 10350421, 1343521, 24301, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 1;
1, 31, 31, 1;
1, 121, 381, 121, 1;
1, 456, 3431, 3431, 456, 1;
1, 1709, 26769, 60691, 26769, 1709, 1;
1, 6427, 193705, 848443, 848443, 193705, 6427, 1;
...
G.f. of row 3: (1 + 31*x + 31*x^2 + x^3) = (1-x)^4*(1 + 35*x + 165*x^2 + 455*x^3 + ... + C(4*j+3,4*j)*x^j + ...).
- M. Bayer, B. Goeckner, S. J. Hong, T. McAllister, M. Olsen, C. Pinckney, J. Vega and M. Yip, Lattice polytopes from Schur and symmetric Grothendieck polynomials, Electronic Journal of Combinatorics, Volume 28, Issue 2 (2021). See Proposition 53 and Table 1.
- Tanay Wakhare, Iterated Entropy Derivatives and Binary Entropy Inequalities, arXiv:2312.14743 [cs.IT], 2023.
- Tanay Wakhare, Two Studies of Constraints in High Dimensions: Entropy Inequalities and the Randomized Symmetric Binary Perceptron, Master's Thesis, MIT (2024). See p. 22.
- Raphael Yuster, Almost k-union closed set systems, arXiv:2302.12276 [math.CO], 2023, p. 8.
-
p := n -> (1-x)^(n+1)*add(binomial(n + n*j + j, n*j + j)*x^j, j = 0..n):
seq(print(seq(coeff(p(n), x, k), k = 0..n)), n = 0..8); # Peter Luschny, Nov 02 2022
-
T[n_, k_] := Coefficient[(1 - x)^(n + 1)*
Sum[Binomial[n + n*j + j, n*j + j]*x^j, {j, 0, n}], x, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2021 *)
-
T(n,k)=polcoeff((1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),k)
Original entry on oeis.org
1, 3, 19, 195, 2751, 49413, 1079079, 27760323, 822299383, 27565191753, 1031671508495, 42643092165765, 1929325374428791, 94835735736471369, 5032700868665421519, 286770182910733076163, 17463186681730290301671
Offset: 0
-
a(n)=local(X=x+x*O(x^n));sum(k=0,n, polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),k))
-
a(n)=sum(k=0,n,2^k*polcoeff( (1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),k))
A108291
Triangle, read by rows, resulting from the matrix product of triangle A108267 with Pascal's triangle (A007318).
Original entry on oeis.org
1, 2, 1, 9, 9, 1, 64, 96, 34, 1, 625, 1250, 750, 125, 1, 7776, 19440, 16470, 5265, 461, 1, 117649, 352947, 386561, 184877, 35329, 1715, 1, 2097152, 7340032, 9863168, 6307840, 1913408, 232288, 6434, 1, 43046721, 172186884, 274223556, 220016574
Offset: 0
Triangle begins:
1;
2,1;
9,9,1;
64,96,34,1;
625,1250,750,125,1;
7776,19440,16470,5265,461,1;
117649,352947,386561,184877,35329,1715,1;
2097152,7340032,9863168,6307840,1913408,232288,6434,1; ...
-
{T(n,k)=local(X=x+x*O(x^(n-k))); polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),n-k)}
A173622
Triangle T(n,m) read by rows: The number of m-Schroeder paths of order n with 2 diagonal steps.
Original entry on oeis.org
1, 6, 21, 30, 180, 546, 140, 1430, 6120, 17710, 630, 10920, 65835, 245700, 695640, 2772, 81396, 690690, 3322704, 11515140, 32212719, 12012, 596904, 7125300, 44170896, 187336380, 619851960, 1721286532, 51480, 4326300, 72624816
Offset: 2
This is the left-lower portion of the array which starts in row n=2, columns m>=1 as:
1, 2, 3, 4, 5, 6,..
6, 21, 45, 78, 120, 171, 231,.. # A081266
30, 180, 546, 1224, 2310, 3900, 6090, 8976,.. # bisection A055112
140, 1430, 6120, 17710, 40950, 81840, 147630, 246820, 389160,.. # 5-section A034827
630, 10920, 65835, 245700, 695640, 1645020, 3426885, 6497400, ...
2772, 81396, 690690, 3322704, 11515140, 32212719, 77481495, ...
12012, 596904, 7125300, 44170896, 187336380, 619851960, ...
- Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53 Theorem 2.1.
Showing 1-10 of 10 results.
Comments