A060543
Triangle, read by antidiagonals, where T(n,k) = C(n+n*k+k, n*k+k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 5, 1, 1, 35, 28, 7, 1, 1, 126, 165, 55, 9, 1, 1, 462, 1001, 455, 91, 11, 1, 1, 1716, 6188, 3876, 969, 136, 13, 1, 1, 6435, 38760, 33649, 10626, 1771, 190, 15, 1, 1, 24310, 245157, 296010, 118755, 23751, 2925, 253, 17, 1, 1, 92378, 1562275
Offset: 0
row 1: (2*n+1)/1!
row 2: (3*n+1)*(3*n+2)/2!
row 3: (4*n+1)*(4*n+2)*(4*n+3)/3!
row 4: (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/4!
row 5: (6*n+1)*(6*n+2)*(6*n+3)*(6*n+4)*(6*n+5)/5!.
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,10,28,55,91,136,190,253,325,406,496,...
1,35,165,455,969,1771,2925,4495,6545,...
1,126,1001,3876,10626,23751,46376,82251,...
1,462,6188,33649,118755,324632,749398,...
1,1716,38760,296010,1344904,4496388,...
-
T(n,k)=binomial(n+n*k+k,n*k+k)
-
{ i=0; write("b060543.txt", "0 1"); for (m=0, 20, for (k=0, m + 1, n=m - k + 1; write("b060543.txt", i++, " ", binomial(n + n*k + k, n*k + k))); ) } \\ Harry J. Smith, Jul 06 2009
A177784
a(n) = binomial(n^2, n) / ( n*(n+1) ).
Original entry on oeis.org
1, 7, 91, 1771, 46376, 1533939, 61474519, 2898753715, 157366449604, 9672348219898, 664226242466073, 50419551102990876, 4193002458968329488, 379189865879906158731, 37054233830964389244975
Offset: 2
For n = 3, binomial(9,3)/(3*4) =84/12 = 7.
For example, the coefficient of s(3) in nabla(nabla(nabla(s(3)))) is equal to q^6*t^2+q^5*t^3+q^4*t^4+q^3*t^5+q^2*t^6+q^4*t^3+q^3*t^4, and if we let q and t be equal to 1, this coefficient reduces to 7 = a(3). - _John M. Campbell_, Nov 18 2017
-
[Binomial(n^2,n)/(2*Binomial(n+1,2)): n in [2..30]]; // G. C. Greubel, Jul 18 2024
-
A177784 := proc(n)
binomial(n^2,n)/(n^2+n) ;
end proc:
seq(A177784(n),n=2..20) ; # R. J. Mathar, Nov 07 2011
-
Table[Binomial[n^2,n]/(2*Binomial[n+1,2]), {n,2,30}] (* G. C. Greubel, Jul 18 2024 *)
-
[binomial(n^2,n)//(n*(n+1)) for n in range(2,31)] # G. C. Greubel, Jul 18 2024
A177456
a(n) = binomial(n^2,n+1)/n.
Original entry on oeis.org
2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2
For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
- G. C. Greubel, Table of n, a(n) for n = 2..335
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
-
[Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
-
with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
-
Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
-
[binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024
A177788
a(n) = binomial(n^2, n+1)/(n-1).
Original entry on oeis.org
4, 63, 1456, 44275, 1669536, 75163011, 3934369216, 234799050915, 15736644960400, 1170354134607658, 95648578915114512, 8520904136405458044, 821828481957792579648, 85317719822978885714475, 9485883860726883646713600, 1124586875214241546178986915
Offset: 2
-
[Binomial(n^2,n+1)/(n-1): n in [2..30]]; // G. C. Greubel, Apr 28 2024
-
n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T):
-
Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* G. C. Greubel, Apr 28 2024 *)
-
a(n) = binomial(n^2, n+1)/(n-1) \\ Charles R Greathouse IV, May 01 2024
-
[binomial(n^2,n+1)/(n-1) for n in range(2,31)] # G. C. Greubel, Apr 28 2024
Removed redundant second Maple version -
R. J. Mathar, May 14 2010
A177454
( binomial(2*p,p) - 2)/p where p = prime(n).
Original entry on oeis.org
2, 6, 50, 490, 64130, 800046, 137270954, 1860277042, 357975249026, 1036802293087622, 15013817846943906, 47192717955016924590, 10360599532897359064118, 154361699651715243559786
Offset: 1
a(1) = 2 because prime(1) = 2 and (binomial(4, 2) - 2)/2 = (6 - 2)/2 = 2.
a(4) = 490 because prime(4) = 7 and (binomial(14, 7) - 2)/7 = (3432 - 2)/7 = 490.
- Amiram Eldar, Table of n, a(n) for n = 1..263
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.
-
[(Binomial(2*p,p)-2)/p where p is NthPrime(n):n in [1..14]]; // Marius A. Burtea, Aug 11 2019
-
with(numtheory): n0:=20: T:=array(1..n0): k:=1: for n from 1 to 72 do:if type(n,prime)=true then T[k]:= (binomial(2*n,n)-2)/n: k:=k+1: fi: od: print(T):
-
Table[(Binomial[2Prime[n], Prime[n]] - 2)/Prime[n], {n, 15}] (* Alonso del Arte, Feb 27 2013 *)
A303143
Number of minimum total dominating sets in the n-transposition graph.
Original entry on oeis.org
0, 1, 9, 784, 3686400
Offset: 1
A108288
Main diagonal of table A060543; a(n) = C((n+1)^2-1, n*(n+1)).
Original entry on oeis.org
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
Offset: 0
A177466
a(n) = binomial(n^3, n^2) / (n^2 + n + 1).
Original entry on oeis.org
10, 360525, 23263187479980, 4195317468983232014706855, 3118254010126197540790713959812283024388, 13329519847131745416659896296893907619682838146506167497550
Offset: 2
For n = 2, a(2) = binomial(8,4)/7 = 70/7 = 10.
-
[Binomial(n^3,n^2)/(n^2+n+1): n in [2..12]]; // G. C. Greubel, Jul 18 2024
-
A177466 := proc(n) binomial(n^3,n^2)/(n^2+n+1); end proc:
seq(A177466(n),n=2..10) ; # R. J. Mathar, Dec 06 2010
-
Table[Binomial[n^3,n^2]/(n^2+n+1),{n,2,7}] (* Harvey P. Dale, Jan 24 2019 *)
-
[binomial(n^3,n^2)/(n^2+n+1) for n in range(2,13)] # G. C. Greubel, Jul 18 2024
Showing 1-8 of 8 results.
Comments