A014062
a(n) = binomial(n^2, n).
Original entry on oeis.org
1, 1, 6, 84, 1820, 53130, 1947792, 85900584, 4426165368, 260887834350, 17310309456440, 1276749965026536, 103619293824707388, 9176358300744339432, 880530516383349192480, 91005567811177478095440, 10078751602022313874633200, 1190739044344491048895397910
Offset: 0
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 265.
- T. D. Noe, Table of n, a(n) for n=0..100
- Horst A. Alzer and Jozsef J. B. Ĺ andor, On a binomial coefficient and a product of prime numbers, Appl. An. Disc. Math. 5 (2011) 87-92.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Hansraj Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.
-
[Binomial(n^2,n): n in [0..30]]; // G. C. Greubel, Apr 29 2024
-
Table[Binomial[n^2,n],{n,0,22}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
Table[SeriesCoefficient[(1+x)^(n^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2-n, k))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 18 2015
-
[binomial(n^2,n) for n in range(31)] # G. C. Greubel, Apr 29 2024
A177234
a(n) = binomial(n^2, n)/(n+1).
Original entry on oeis.org
2, 21, 364, 8855, 278256, 10737573, 491796152, 26088783435, 1573664496040, 106395830418878, 7970714909592876, 655454164338881388, 58702034425556612832, 5687847988198592380965, 592867741295430227919600
Offset: 2
a(3) = 21 because binomial(9,3)/(3+1) = 84/4 = 21.
- H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.
-
[Binomial(n^2,n)/(n+1): n in [2..30]]; // G. C. Greubel, Apr 27 2024
-
with(numtheory):n0:=25:T:=array(1..n0-1):for n from 2 to n0 do: T[n-1]:= binomial(n*n,n)/(n+1):od:print(T):
-
Table[Binomial[n^2,n]/(n+1), {n,2,30}] (* G. C. Greubel, Apr 27 2024 *)
-
[binomial(n^2,n)/(n+1) for n in range(2,31)] # G. C. Greubel, Apr 27 2024
A177456
a(n) = binomial(n^2,n+1)/n.
Original entry on oeis.org
2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2
For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
- G. C. Greubel, Table of n, a(n) for n = 2..335
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
-
[Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
-
with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
-
Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
-
[binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024
A177788
a(n) = binomial(n^2, n+1)/(n-1).
Original entry on oeis.org
4, 63, 1456, 44275, 1669536, 75163011, 3934369216, 234799050915, 15736644960400, 1170354134607658, 95648578915114512, 8520904136405458044, 821828481957792579648, 85317719822978885714475, 9485883860726883646713600, 1124586875214241546178986915
Offset: 2
-
[Binomial(n^2,n+1)/(n-1): n in [2..30]]; // G. C. Greubel, Apr 28 2024
-
n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T):
-
Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* G. C. Greubel, Apr 28 2024 *)
-
a(n) = binomial(n^2, n+1)/(n-1) \\ Charles R Greathouse IV, May 01 2024
-
[binomial(n^2,n+1)/(n-1) for n in range(2,31)] # G. C. Greubel, Apr 28 2024
Removed redundant second Maple version -
R. J. Mathar, May 14 2010
A177837
a(n) = binomial(n^3-2, n-2).
Original entry on oeis.org
1, 25, 1891, 302621, 84957251, 37307689133, 23728431347335, 20688443967788245, 23730591032609929084, 34687456062438088435890, 62994291032837018079196115, 139227352512368728514134480110, 368132634640135991872548754745138, 1147827724811251389730308940150980661
Offset: 2
a(3) = binomial(3^3-2, 3-2) = binomial(25, 1) = 25.
-
[Binomial(n^3-2, n-2): n in [2..30]]; // G. C. Greubel, Jul 18 2024
-
with(numtheory): n0:=30: T:=array(1..n0): T:=array(1..n0-1):
for n from 2 to n0 do: p:=3: T[n-1]:= (n-1)*(binomial(n^p,n))/((n^(p-1))*(n^p-1)): od: print(T):
-
Table[Binomial[n^3-2,n-2],{n,2,20}] (* Harvey P. Dale, Aug 08 2013 *)
-
[binomial(n^3-2,n-2) for n in range(2,31)] # G. C. Greubel, Jul 18 2024
Swapped general and specific definitions -
R. J. Mathar, Oct 12 2010
A351501
a(n) = binomial(n^2 + n - 1, n) / (n^2 + n - 1).
Original entry on oeis.org
1, 2, 15, 204, 4095, 109668, 3689595, 149846840, 7141879503, 391139588190, 24218296445200, 1673538279265020, 127715832778905150, 10670643284149377480, 968929726650218004435, 95024894699780159868144, 10011211830149283223044015
Offset: 1
-
Table[With[{c=n^2+n-1},Binomial[c,n]/c],{n,20}] (* Harvey P. Dale, Jan 01 2024 *)
-
from math import comb
def A351501(n): return comb(m := n**2+n-1,n)//m # Chai Wah Wu, May 07 2022
-
[binomial(n*n+n-1,n)/(n*n+n-1) for n in range(1,29)]
A386558
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 7, 15, 26, 40, 57, ...
0, 5, 30, 91, 204, 385, 650, ...
0, 14, 143, 612, 1771, 4095, 8184, ...
0, 42, 728, 4389, 16380, 46376, 109668, ...
0, 132, 3876, 32890, 158224, 548340, 1533939, ...
Columns k=0..10 give
A000007,
A000108,
A006013,
A006632,
A118971,
A130564(n+1),
A130565(n+1),
A234466,
A234513,
A234573,
A235340.
Showing 1-7 of 7 results.
Comments