A137610
Self-convolution of A014062, where A014062(n) = C(n^2, n).
Original entry on oeis.org
1, 2, 13, 180, 3844, 110908, 4030740, 176640072, 9059743648, 532179428700, 35219852623888, 2592514449263656, 210072673380786552, 18579938909696752728, 1780987027765227959096, 183907984490301947455872
Offset: 0
-
Table[Sum[Binomial[k^2, k]*Binomial[(n-k)^2, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 20 2025 *)
-
a(n)=sum(k=0,n,binomial(k^2,k)*binomial((n-k)^2,n-k))
A167010
a(n) = Sum_{k=0..n} C(n,k)^n.
Original entry on oeis.org
1, 2, 6, 56, 1810, 206252, 86874564, 132282417920, 770670360699138, 16425660314368351892, 1367610300690018553312276, 419460465362069257397304825200, 509571049488109525160616367158261124, 2290638298071684282149128235413262383804352
Offset: 0
The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1; ...
in which the row sums form this sequence.
-
[(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2012 *)
-
a(n)=sum(k=0,n,binomial(n,k)^n)
-
[sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A060539
Table by antidiagonals of number of ways of choosing k items from n*k.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 6, 20, 70, 252, 924, 3432, ...
3, 15, 84, 495, 3003, 18564, 116280, ...
4, 28, 220, 1820, 15504, 134596, 1184040, ...
5, 45, 455, 4845, 53130, 593775, 6724520, ...
6, 66, 816, 10626, 142506, 1947792, 26978328, ...
7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
-
A:= (n, k)-> binomial(n*k, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Jul 28 2023
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009
A167008
a(n) = Sum_{k=0..n} C(n,k)^k.
Original entry on oeis.org
1, 2, 4, 14, 106, 1732, 66634, 5745700, 1058905642, 461715853196, 461918527950694, 989913403174541980, 5009399946447021173140, 60070720443204091719085184, 1548154498059133199618813305334, 92346622775540905956057053976278584
Offset: 0
-
a167008 = sum . a219206_row -- Reinhard Zumkeller, Feb 27 2015
-
[(&+[Binomial(n,j)^j: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Flatten[{1,Table[Sum[Binomial[n, k]^k, {k,0,n}], {n,20}]}]
(* Program for numerical value of the limit a(n)^(1/n^2) *) (1-r)^(-r/2)/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2},WorkingPrecision->100] (* Vaclav Kotesovec, Dec 12 2012 *)
Total/@Table[Binomial[n,k]^k,{n,0,20},{k,0,n}] (* Harvey P. Dale, Oct 19 2021 *)
-
a(n)=sum(k=0,n,binomial(n,k)^k)
-
[sum(binomial(n,j)^j for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A167009
a(n) = Sum_{k=0..n} C(n^2, n*k).
Original entry on oeis.org
1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0
The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ...
in which the row sums form this sequence.
-
[(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
-
a(n)=sum(k=0,n,binomial(n^2,n*k))
-
[sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A090642
Triangle read by rows: T(n,k) = binomial(n^2, k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 1, 9, 36, 84, 1, 16, 120, 560, 1820, 1, 25, 300, 2300, 12650, 53130, 1, 36, 630, 7140, 58905, 376992, 1947792, 1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 1, 64, 2016, 41664, 635376, 7624512, 74974368, 621216192, 4426165368
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 6;
1, 9, 36, 84;
1, 16, 120, 560, 1820;
1, 25, 300, 2300, 12650, 53130;
1, 36, 630, 7140, 58905, 376992, 1947792;
...
A096131
Sum of the terms of the n-th row of triangle pertaining to A096130.
Original entry on oeis.org
1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1
From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
Cf.
A014062,
A096130,
A034841,
A007318,
A226391,
A167009,
A167008,
A167010,
A072034,
A086331,
A349470.
-
List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
-
A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
-
Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
-
a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018
A135860
a(n) = binomial(n*(n+1), n).
Original entry on oeis.org
1, 2, 15, 220, 4845, 142506, 5245786, 231917400, 11969016345, 706252528630, 46897636623981, 3461014728350400, 281014969393251275, 24894763097057357700, 2389461906843449885700, 247012484980695576597296, 27361230617617949782033713, 3233032526324680287912449550
Offset: 0
-
[Binomial(n*(n+1), n): n in [0..30]]; // G. C. Greubel, Feb 20 2022
-
Table[Binomial[n^2 + n, n], {n, 0, 16}] (* Arkadiusz Wesolowski, Jul 18 2012 *)
(* or *)
Table[SeriesCoefficient[(1+x)^(n*(n+1)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
a(n)=binomial(n*(n+1),n)
for(n=0,15,print1(a(n),", "))
-
a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k))
for(n=0,15,print1(a(n),", "))
-
[binomial(n*(n+1), n) for n in (0..30)] # G. C. Greubel, Feb 20 2022
A177234
a(n) = binomial(n^2, n)/(n+1).
Original entry on oeis.org
2, 21, 364, 8855, 278256, 10737573, 491796152, 26088783435, 1573664496040, 106395830418878, 7970714909592876, 655454164338881388, 58702034425556612832, 5687847988198592380965, 592867741295430227919600
Offset: 2
a(3) = 21 because binomial(9,3)/(3+1) = 84/4 = 21.
- H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.
-
[Binomial(n^2,n)/(n+1): n in [2..30]]; // G. C. Greubel, Apr 27 2024
-
with(numtheory):n0:=25:T:=array(1..n0-1):for n from 2 to n0 do: T[n-1]:= binomial(n*n,n)/(n+1):od:print(T):
-
Table[Binomial[n^2,n]/(n+1), {n,2,30}] (* G. C. Greubel, Apr 27 2024 *)
-
[binomial(n^2,n)/(n+1) for n in range(2,31)] # G. C. Greubel, Apr 27 2024
A209330
Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0
The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
-
Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
-
{T(n,k)=binomial(n^2,n*k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Showing 1-10 of 46 results.
Comments