A014062 a(n) = binomial(n^2, n).
1, 1, 6, 84, 1820, 53130, 1947792, 85900584, 4426165368, 260887834350, 17310309456440, 1276749965026536, 103619293824707388, 9176358300744339432, 880530516383349192480, 91005567811177478095440, 10078751602022313874633200, 1190739044344491048895397910
Offset: 0
Keywords
References
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 265.
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- Horst A. Alzer and Jozsef J. B. Ĺ andor, On a binomial coefficient and a product of prime numbers, Appl. An. Disc. Math. 5 (2011) 87-92.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Hansraj Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.
Programs
-
Magma
[Binomial(n^2,n): n in [0..30]]; // G. C. Greubel, Apr 29 2024
-
Mathematica
Table[Binomial[n^2,n],{n,0,22}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *) Table[SeriesCoefficient[(1+x)^(n^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
PARI
{a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2-n, k))} for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 18 2015
-
SageMath
[binomial(n^2,n) for n in range(31)] # G. C. Greubel, Apr 29 2024
Formula
a(n) ~ 1/sqrt(2*Pi) * (e*n)^(n - 1/2). - Charles R Greathouse IV, Jul 07 2007
a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n^2 - n, k). - Paul D. Hanna, Nov 18 2015
a(n) = (n+1)*A177234(n). - R. J. Mathar, Jan 25 2019
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = n*(n+1)*A177784(n).
a(n) = (n+1)*A177456(n)/(n-1).
a(n) = (n+1)*A177788(n)/n. (End)
a(n) = [x^n] (1+x)^(n^2). - Vaclav Kotesovec, Aug 06 2025
Comments