cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014062 a(n) = binomial(n^2, n).

Original entry on oeis.org

1, 1, 6, 84, 1820, 53130, 1947792, 85900584, 4426165368, 260887834350, 17310309456440, 1276749965026536, 103619293824707388, 9176358300744339432, 880530516383349192480, 91005567811177478095440, 10078751602022313874633200, 1190739044344491048895397910
Offset: 0

Views

Author

Keywords

Comments

Roberts states that Gupta and Khare show that a(n) > A002110(n) for 2 < n < 1794 and that a(n) < A002110(n) for n >= 1794, where A002110(n) is the product of the first n primes. - T. D. Noe, Oct 03 2007
This sequence describes the number of ways to arrange n objects in an n X n array (for example, stars in a flag's field pattern). - Tom Young (mcgreg265(AT)msn.com), Jun 17 2010
It appears that a(n) == n (mod n^3) only if n is 1, an odd prime, the square of an odd prime, or the cube of an odd prime. - Gary Detlefs, Aug 06 2013; corrected by Michel Marcus, May 29 2015

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 265.

Crossrefs

Main diagonal of A060539.

Programs

  • Magma
    [Binomial(n^2,n): n in [0..30]]; // G. C. Greubel, Apr 29 2024
    
  • Mathematica
    Table[Binomial[n^2,n],{n,0,22}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
    Table[SeriesCoefficient[(1+x)^(n^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2-n, k))}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 18 2015
    
  • SageMath
    [binomial(n^2,n) for n in range(31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) ~ 1/sqrt(2*Pi) * (e*n)^(n - 1/2). - Charles R Greathouse IV, Jul 07 2007
a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n^2 - n, k). - Paul D. Hanna, Nov 18 2015
a(n) = (n+1)*A177234(n). - R. J. Mathar, Jan 25 2019
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = n*(n+1)*A177784(n).
a(n) = (n+1)*A177456(n)/(n-1).
a(n) = (n+1)*A177788(n)/n. (End)
a(n) = [x^n] (1+x)^(n^2). - Vaclav Kotesovec, Aug 06 2025

A177784 a(n) = binomial(n^2, n) / ( n*(n+1) ).

Original entry on oeis.org

1, 7, 91, 1771, 46376, 1533939, 61474519, 2898753715, 157366449604, 9672348219898, 664226242466073, 50419551102990876, 4193002458968329488, 379189865879906158731, 37054233830964389244975
Offset: 2

Views

Author

Michel Lagneau, May 13 2010

Keywords

Comments

All terms are integer because n and n+1 divide the binomial (cf. A060545, A177234).
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), letting s(n) denote the Schur function indexed by n, a(n)*(-1)^(n+1) is equal to the coefficient of s(n) in nabla^(n)s(n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions. - John M. Campbell, Nov 18 2017

Examples

			For n = 3, binomial(9,3)/(3*4) =84/12 = 7.
For example, the coefficient of s(3) in nabla(nabla(nabla(s(3)))) is equal to q^6*t^2+q^5*t^3+q^4*t^4+q^3*t^5+q^2*t^6+q^4*t^3+q^3*t^4, and if we let q and t be equal to 1, this coefficient reduces to 7 = a(3). - _John M. Campbell_, Nov 18 2017
		

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n)/(2*Binomial(n+1,2)): n in [2..30]]; // G. C. Greubel, Jul 18 2024
    
  • Maple
    A177784 := proc(n)
            binomial(n^2,n)/(n^2+n) ;
    end proc:
    seq(A177784(n),n=2..20) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[Binomial[n^2,n]/(2*Binomial[n+1,2]), {n,2,30}] (* G. C. Greubel, Jul 18 2024 *)
  • SageMath
    [binomial(n^2,n)//(n*(n+1)) for n in range(2,31)] # G. C. Greubel, Jul 18 2024

A177456 a(n) = binomial(n^2,n+1)/n.

Original entry on oeis.org

2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2

Views

Author

Michel Lagneau, May 09 2010

Keywords

Comments

n divides binomial(n^2,n+1).
Proof 1 :(n+1)*binomial(n^2,n+1) = n*(n-1)*binomial(n^2,n) => n divide binomial(n^2,n+1) because gcd(n,n+1) = 1.
Proof 2 : a(n) = binomial(n^2,n+1)/n = (n-1)*binomial(n^2-2,n-1)=> a(n) is an integer. - Michel Lagneau, May 13 2010

Examples

			For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
		

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
    
  • Maple
    with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
  • SageMath
    [binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) = binomial(n^2,n+1)/n.
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = (n-1)*A177234(n).
a(n) = (n-1)*A177788(n)/n.
a(n) = n*(n-1)*A177784(n).
a(n) = A014062(n)/n. (End)

A177788 a(n) = binomial(n^2, n+1)/(n-1).

Original entry on oeis.org

4, 63, 1456, 44275, 1669536, 75163011, 3934369216, 234799050915, 15736644960400, 1170354134607658, 95648578915114512, 8520904136405458044, 821828481957792579648, 85317719822978885714475, 9485883860726883646713600, 1124586875214241546178986915
Offset: 2

Views

Author

Michel Lagneau, May 13 2010

Keywords

Comments

The entries are integer for n >= 2 because binomial(n^2,n+1)/(n-1) = n*binomial(n^2-2,n-1), which is a product of two integers.

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/(n-1): n in [2..30]]; // G. C. Greubel, Apr 28 2024
    
  • Maple
    n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* G. C. Greubel, Apr 28 2024 *)
  • PARI
    a(n) = binomial(n^2, n+1)/(n-1) \\ Charles R Greathouse IV, May 01 2024
  • SageMath
    [binomial(n^2,n+1)/(n-1) for n in range(2,31)] # G. C. Greubel, Apr 28 2024
    

Formula

a(n) = binomial(n^2,n+1)/(n-1).
a(n) = n * A177234(n).
a(n) = n^2 * A177784(n).

Extensions

Removed redundant second Maple version - R. J. Mathar, May 14 2010

A177424 Exponent of the highest power of 2 dividing binomial(n^2,n).

Original entry on oeis.org

0, 0, 1, 2, 2, 1, 4, 3, 3, 1, 3, 3, 2, 3, 5, 4, 4, 1, 3, 3, 5, 1, 4, 8, 3, 2, 3, 5, 6, 4, 6, 5, 5, 1, 3, 3, 5, 2, 6, 3, 3, 3, 4, 3, 4, 4, 5, 6, 4, 2, 3, 7, 5, 1, 5, 5, 3, 4, 6, 6, 7, 5, 7, 6, 6, 1, 3, 3, 5, 2, 6, 4, 7, 1, 3, 3, 3, 5, 6, 4, 4, 2, 6, 3, 5, 5, 4, 6, 6, 2, 4, 12, 6, 5, 6, 7, 5, 2, 3, 6, 5, 3, 6, 3, 6
Offset: 0

Views

Author

Michel Lagneau, May 07 2010

Keywords

Comments

a(n) is the largest integer such that 2^a(n) divides binomial(n^2,n)=A014062(n).
a(n) is the number of carries when adding n to n^2-n in base 2. - Robert Israel, Oct 23 2019

Examples

			For n = 6, binomial(36,6) = 1947792 = 2^4*3*7*11*17*31, the highest power of 2 is 2^4, and the exponent of 2^4 is a(6)=4.
		

Crossrefs

Programs

  • Maple
    A007814 := proc(n) if type(n,'odd') then 0; else for p in ifactors(n)[2] do if op(1,p) = 2 then return op(2,p); end if; end do: end if; end proc:
    A014062 := proc(n) binomial(n^2,n) ; end proc:
    A177424 := proc(n) A007814(A014062(n)) ; end proc: seq(A177424(n),n=0..80) ;
    # Alternative:
    nc:= proc(a,b,c)
      local t;
      if c=0 and (a=0 or b=0) then return 0 fi;
      t:= (a mod 2) + (b mod 2) + c;
      if t < 2 then  procname(floor(a/2),floor(b/2),0)
      else  1 + procname(floor(a/2),floor(b/2),1)
      fi
    end proc:
    seq(nc(n,n^2-n,0),n=0..100); # Robert Israel, Oct 23 2019
  • Mathematica
    IntegerExponent[Table[Binomial[n^2,n],{n,0,120}],2] (* Harvey P. Dale, Mar 31 2019 *)
  • PARI
    valp(n,p=2)=my(s); while(n\=p, s+=n); s
    a(n)=valp(n^2)-valp(n^2-n)-valp(n) \\ Charles R Greathouse IV, Jul 08 2022
  • Python
    from math import comb
    def A177424(n): return (~(m:=comb(n**2,n))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022
    

Formula

a(n) = A007814(A014062(n)).

Extensions

Maple program replaced by a structured general version - R. J. Mathar, May 10 2010

A177466 a(n) = binomial(n^3, n^2) / (n^2 + n + 1).

Original entry on oeis.org

10, 360525, 23263187479980, 4195317468983232014706855, 3118254010126197540790713959812283024388, 13329519847131745416659896296893907619682838146506167497550
Offset: 2

Views

Author

Michel Lagneau, May 09 2010

Keywords

Comments

All entries are integers. [Proof: binomial(n^3, n^2) / (n^2 + n + 1) = n^3 (n^3 - 1) (n^3 - 2)*...*(n^3- n^2 +1) / ( (n^2)! *(n^2 + n + 1)). With n^3 - 1 = (n-1)*(n^2 + n + 1), we obtain a(n) = n* binomial(n^3-2, n^2-2) / (n+1). Finally: (n+1) * binomial(n^3, n^2) * 1/ (n^2 + n + 1) = n*binomial(n^3-2, n^2-2). QED]
The step after "finally" seems to demonstrate merely that (n+1)*a(n) is an integer, but not that a(n) is itself an integer. Is the proof incomplete? - R. J. Mathar, Dec 06 2010
So far all that has been shown is that (n+1)*a(n) is an integer. To complete the proof, note that a(n) = n^3*(n-1)*(n^3-2)*...*(n^3-n^2) / (n^2*(n^2-1)!*(n^3-n^2)) = binomial(n^3-2,n^2-1)/n. Hence n*a(n) is also an integer, and so (n+1)*a(n) - n*a(n) = a(n) is an integer. Q.E.D. - N. J. A. Sloane, Dec 09 2010

Examples

			For n = 2, a(2) = binomial(8,4)/7 = 70/7 = 10.
		

Crossrefs

Programs

  • Magma
    [Binomial(n^3,n^2)/(n^2+n+1): n in [2..12]]; // G. C. Greubel, Jul 18 2024
    
  • Maple
    A177466 := proc(n) binomial(n^3,n^2)/(n^2+n+1); end proc:
    seq(A177466(n),n=2..10) ; # R. J. Mathar, Dec 06 2010
  • Mathematica
    Table[Binomial[n^3,n^2]/(n^2+n+1),{n,2,7}] (* Harvey P. Dale, Jan 24 2019 *)
  • SageMath
    [binomial(n^3,n^2)/(n^2+n+1) for n in range(2,13)] # G. C. Greubel, Jul 18 2024

A177837 a(n) = binomial(n^3-2, n-2).

Original entry on oeis.org

1, 25, 1891, 302621, 84957251, 37307689133, 23728431347335, 20688443967788245, 23730591032609929084, 34687456062438088435890, 62994291032837018079196115, 139227352512368728514134480110, 368132634640135991872548754745138, 1147827724811251389730308940150980661
Offset: 2

Views

Author

Michel Lagneau, May 14 2010

Keywords

Comments

This is the case p=3 of a(n,p) = binomial(n^p,n) / ( PHI(n,p) * n^(p-1)) where PHI(n,p) = 1 + n + n^2 + ... + n^(p-1) = (n^p - 1) /(n - 1).
These a(n,p) are integer if n, p > = 2. [Proof :
a(n,p) = binomial(n^p,n)* 1 / (n^(p-1)*PHI(n,p))
= n^p *(n^p - 1)*(n^p - 2)...(n^p - n + 1)/((n-2)!*(n-1)*n * n^(p-1)* PHI(n,p)).
Insert PHI(n,p)=(n^p - 1) /(n - 1) and cancel n^p, n-1 and n^p - 1 where n > = 2:
a(n,p) = (n^p - 2)*(n^p - 3)...(n^p - n + 1)/(n - 2)! = binomial (n^p - 2, n - 2). QED]

Examples

			a(3) = binomial(3^3-2, 3-2) = binomial(25, 1) = 25.
		

Crossrefs

Cf. A177234, A177784 (case p = 2).

Programs

  • Magma
    [Binomial(n^3-2, n-2): n in [2..30]]; // G. C. Greubel, Jul 18 2024
    
  • Maple
    with(numtheory): n0:=30: T:=array(1..n0): T:=array(1..n0-1):
    for n from 2 to n0 do: p:=3: T[n-1]:= (n-1)*(binomial(n^p,n))/((n^(p-1))*(n^p-1)): od: print(T):
  • Mathematica
    Table[Binomial[n^3-2,n-2],{n,2,20}] (* Harvey P. Dale, Aug 08 2013 *)
  • SageMath
    [binomial(n^3-2,n-2) for n in range(2,31)] # G. C. Greubel, Jul 18 2024

Formula

a(n) = binomial(n^3, n) / (n^2 * (n^2 + n + 1) ).

Extensions

Swapped general and specific definitions - R. J. Mathar, Oct 12 2010

A386879 a(n) = [x^n] 1/(1 - x)^(n*(n-1)/2).

Original entry on oeis.org

1, 0, 1, 10, 126, 2002, 38760, 888030, 23535820, 708930508, 23930713170, 895068996640, 36749279048405, 1643385429346680, 79515468511191440, 4139207762053520646, 230672804560960311000, 13703037308872895467960, 864424422377992704918690, 57711135174726478041405270, 4065392394346039279040037520
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^(n*(n-1)/2), {x, 0, n}], {n, 0, 25}]
    Join[{1}, Table[Binomial[n*(n+1)/2, n] * (n-1) / (n+1), {n, 1, 25}]]

Formula

a(n) ~ exp(n) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)).
For n > 0, a(n) = binomial(n*(n+1)/2, n) * (n-1)/(n+1).

A386880 a(n) = [x^n] 1/(1 - x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 6, 56, 715, 11628, 230230, 5379616, 145008513, 4431613550, 151473214816, 5727160371180, 237377895350076, 10704005376506540, 521748877569771510, 27338999059076777600, 1532576541123942256285, 91527291781199227579626, 5801648509628587739612170, 389032765009190361630625600
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^(n*(n+1)/2), {x, 0, n}], {n, 0, 25}]
    Join[{1}, Table[Binomial[n*(n + 3)/2, n]*(n + 1)/(n + 3), {n, 1, 25}]]

Formula

a(n) ~ exp(n+2) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)).
For n > 0, a(n) = binomial(n*(n+3)/2, n) * (n+1)/(n+3).
Showing 1-9 of 9 results.