cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014062 a(n) = binomial(n^2, n).

Original entry on oeis.org

1, 1, 6, 84, 1820, 53130, 1947792, 85900584, 4426165368, 260887834350, 17310309456440, 1276749965026536, 103619293824707388, 9176358300744339432, 880530516383349192480, 91005567811177478095440, 10078751602022313874633200, 1190739044344491048895397910
Offset: 0

Views

Author

Keywords

Comments

Roberts states that Gupta and Khare show that a(n) > A002110(n) for 2 < n < 1794 and that a(n) < A002110(n) for n >= 1794, where A002110(n) is the product of the first n primes. - T. D. Noe, Oct 03 2007
This sequence describes the number of ways to arrange n objects in an n X n array (for example, stars in a flag's field pattern). - Tom Young (mcgreg265(AT)msn.com), Jun 17 2010
It appears that a(n) == n (mod n^3) only if n is 1, an odd prime, the square of an odd prime, or the cube of an odd prime. - Gary Detlefs, Aug 06 2013; corrected by Michel Marcus, May 29 2015

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 265.

Crossrefs

Main diagonal of A060539.

Programs

  • Magma
    [Binomial(n^2,n): n in [0..30]]; // G. C. Greubel, Apr 29 2024
    
  • Mathematica
    Table[Binomial[n^2,n],{n,0,22}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
    Table[SeriesCoefficient[(1+x)^(n^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2-n, k))}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 18 2015
    
  • SageMath
    [binomial(n^2,n) for n in range(31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) ~ 1/sqrt(2*Pi) * (e*n)^(n - 1/2). - Charles R Greathouse IV, Jul 07 2007
a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n^2 - n, k). - Paul D. Hanna, Nov 18 2015
a(n) = (n+1)*A177234(n). - R. J. Mathar, Jan 25 2019
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = n*(n+1)*A177784(n).
a(n) = (n+1)*A177456(n)/(n-1).
a(n) = (n+1)*A177788(n)/n. (End)
a(n) = [x^n] (1+x)^(n^2). - Vaclav Kotesovec, Aug 06 2025

A177234 a(n) = binomial(n^2, n)/(n+1).

Original entry on oeis.org

2, 21, 364, 8855, 278256, 10737573, 491796152, 26088783435, 1573664496040, 106395830418878, 7970714909592876, 655454164338881388, 58702034425556612832, 5687847988198592380965, 592867741295430227919600
Offset: 2

Views

Author

Michel Lagneau, May 05 2010, May 08 2010

Keywords

Comments

Theorem: binomial(n^2, n)/(n+1) is an integer for n >= 2.
Proof 1 from William J. Keith, May 08 2010:
binomial(n^2, n) * 1/(n+1)
= (n^2)*(n^2-1)*(n^2-2)!/((n^2-n)!*n*(n-1)*(n-2)!) * 1/(n+1)
= n*(n^2-2)!/((n^2-n)!*(n-2)!) = n * binomial(n^2-2,n-2). QED
Proof 2 from Max Alekseyev, May 08 2010:
Recall that the valuation of m! w.r.t. prime p equals the sum floor(m/p^i) over i=1,2,3,...
Moreover, if m=a+b where a and b are nonnegative integers, then floor(m/p^i) - floor(a/p^i) - floor(b/p^i) >= 0.
Let n>1. To prove that binomial(n^2, n)/(n+1) is an integer, it is enough to show that its valuation w.r.t. any prime p is nonnegative.
It is clear that trouble may come only from primes dividing n+1.
Let valuation(n+1,p)=k > 0, i.e., n+1=p^k*m where prime p does not divide m.
Then n = p^k*m - 1, n^2 = p^(2k)*m^2 - 2*p^k*m + 1 and n^2 - n = p^(2k)*m^2 - 3*p^k*m + 2.
It is easy to check that floor(n^2/p^i) - floor(n/p^i) - floor((n^2-n)/p^i) = 1 for i=1,2,...,k if p>2 and for i=2,3,...,k+1 if p=2, implying that valuation(binomial(n^2, n)/(n+1),p) >= 0. QED

Examples

			a(3) = 21 because binomial(9,3)/(3+1) = 84/4 = 21.
		

References

  • H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n)/(n+1): n in [2..30]]; // G. C. Greubel, Apr 27 2024
    
  • Maple
    with(numtheory):n0:=25:T:=array(1..n0-1):for n from 2 to n0 do: T[n-1]:= binomial(n*n,n)/(n+1):od:print(T):
  • Mathematica
    Table[Binomial[n^2,n]/(n+1), {n,2,30}] (* G. C. Greubel, Apr 27 2024 *)
  • SageMath
    [binomial(n^2,n)/(n+1) for n in range(2,31)] # G. C. Greubel, Apr 27 2024

Formula

From G. C. Greubel, Apr 27 2024: (Start)
a(n) = A014062(n)/(n+1).
a(n) = A177456(n)/(n-1).
a(n) = n*A177784(n).
a(n) = A177788(n)/n. (End)

A177456 a(n) = binomial(n^2,n+1)/n.

Original entry on oeis.org

2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2

Views

Author

Michel Lagneau, May 09 2010

Keywords

Comments

n divides binomial(n^2,n+1).
Proof 1 :(n+1)*binomial(n^2,n+1) = n*(n-1)*binomial(n^2,n) => n divide binomial(n^2,n+1) because gcd(n,n+1) = 1.
Proof 2 : a(n) = binomial(n^2,n+1)/n = (n-1)*binomial(n^2-2,n-1)=> a(n) is an integer. - Michel Lagneau, May 13 2010

Examples

			For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
		

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
    
  • Maple
    with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
  • SageMath
    [binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) = binomial(n^2,n+1)/n.
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = (n-1)*A177234(n).
a(n) = (n-1)*A177788(n)/n.
a(n) = n*(n-1)*A177784(n).
a(n) = A014062(n)/n. (End)
Showing 1-3 of 3 results.