Original entry on oeis.org
1, 3, 19, 195, 2751, 49413, 1079079, 27760323, 822299383, 27565191753, 1031671508495, 42643092165765, 1929325374428791, 94835735736471369, 5032700868665421519, 286770182910733076163, 17463186681730290301671
Offset: 0
-
a(n)=local(X=x+x*O(x^n));sum(k=0,n, polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),k))
-
a(n)=sum(k=0,n,2^k*polcoeff( (1-x)^(n+1)*sum(j=0,n,binomial(n+n*j+j,n*j+j)*x^j),k))
A060543
Triangle, read by antidiagonals, where T(n,k) = C(n+n*k+k, n*k+k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 5, 1, 1, 35, 28, 7, 1, 1, 126, 165, 55, 9, 1, 1, 462, 1001, 455, 91, 11, 1, 1, 1716, 6188, 3876, 969, 136, 13, 1, 1, 6435, 38760, 33649, 10626, 1771, 190, 15, 1, 1, 24310, 245157, 296010, 118755, 23751, 2925, 253, 17, 1, 1, 92378, 1562275
Offset: 0
row 1: (2*n+1)/1!
row 2: (3*n+1)*(3*n+2)/2!
row 3: (4*n+1)*(4*n+2)*(4*n+3)/3!
row 4: (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/4!
row 5: (6*n+1)*(6*n+2)*(6*n+3)*(6*n+4)*(6*n+5)/5!.
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,10,28,55,91,136,190,253,325,406,496,...
1,35,165,455,969,1771,2925,4495,6545,...
1,126,1001,3876,10626,23751,46376,82251,...
1,462,6188,33649,118755,324632,749398,...
1,1716,38760,296010,1344904,4496388,...
-
T(n,k)=binomial(n+n*k+k,n*k+k)
-
{ i=0; write("b060543.txt", "0 1"); for (m=0, 20, for (k=0, m + 1, n=m - k + 1; write("b060543.txt", i++, " ", binomial(n + n*k + k, n*k + k))); ) } \\ Harry J. Smith, Jul 06 2009
A108291
Triangle, read by rows, resulting from the matrix product of triangle A108267 with Pascal's triangle (A007318).
Original entry on oeis.org
1, 2, 1, 9, 9, 1, 64, 96, 34, 1, 625, 1250, 750, 125, 1, 7776, 19440, 16470, 5265, 461, 1, 117649, 352947, 386561, 184877, 35329, 1715, 1, 2097152, 7340032, 9863168, 6307840, 1913408, 232288, 6434, 1, 43046721, 172186884, 274223556, 220016574
Offset: 0
Triangle begins:
1;
2,1;
9,9,1;
64,96,34,1;
625,1250,750,125,1;
7776,19440,16470,5265,461,1;
117649,352947,386561,184877,35329,1715,1;
2097152,7340032,9863168,6307840,1913408,232288,6434,1; ...
-
{T(n,k)=local(X=x+x*O(x^(n-k))); polcoeff(sum(j=0,n,binomial(n+n*j+j,n*j+j)*(x/(1+X))^j)/(1+X),n-k)}
Showing 1-3 of 3 results.
Comments