cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386860 The total number of big descents in all parking functions of length n.

Original entry on oeis.org

0, 0, 4, 75, 1296, 24010, 491520, 11160261, 280000000, 7716919716, 232190115840, 7582217051695, 267271301197824, 10120214355468750, 409827566090715136, 17679671788737097545, 809596873977295011840, 39228032245196478804616, 2005401600000000000000000, 107880615499838355594014931
Offset: 1

Views

Author

Amanda Priestley, Aug 05 2025

Keywords

Comments

A big descent in a parking function (x_1,x_2,...,x_k) is a position i such that x_i - x_{i+1} >= 2.

Examples

			a(2) = 0 because in the 3 parking functions of length 2 (11, 12, 21), there are 0 descents where the difference is strictly greater than one.
a(3) = 4 as of the 16 parking functions of length 3 (111, 112, 122, 121, 212, 221, 211, 123, 132, 213, 312, 231, 321, 113, 131, 311) the parking functions (131, 311, 312, 231) all each have one big descent. Thus the total number of big descents in all parking functions of length 3 is 4.
		

Crossrefs

Cf. A000272(n+1) (parking functions), A333829, A386015, A386861.

Programs

Formula

a(n) = binomial(n-1,2)*(n+1)^(n-2).
a(n) = A386861(n)*2/n. - Paolo Xausa, Aug 07 2025

A225753 Triangle of transformations with k monotonic runs.

Original entry on oeis.org

1, 3, 1, 10, 16, 1, 35, 155, 65, 1, 126, 1246, 1506, 246, 1, 462, 9142, 24017, 12117, 917, 1, 1716, 63792, 315918, 349840, 88852, 3424, 1, 6435, 432399, 3707559, 7635987, 4362297, 619677, 12861, 1, 24310, 2881450, 40455910, 140543458, 149803270, 49462810, 4200670, 48610, 1
Offset: 1

Views

Author

Chad Brewbaker, May 14 2013

Keywords

Comments

Analogous to the Eulerian triangle for permutations A173018.
T(n,k) is the number of words of length n over the alphabet {0,1,...,n-1} that have k-1 descents, see example. [Joerg Arndt, Jun 25 2013]
The expected number of descents is (Sum_{k=1..n} (k-1)*T(n,k)) / (Sum_{k=1..n} T(n,k)) = (n + 1/n -2)/2. - Geoffrey Critzer, Jun 26 2013

Examples

			T(1,1) = #{[0]} = 1.
T(2,1) = #{[0,0], [0,1], [1,1]} = 3.
T(2,2) = #{[1,0]} = 1.
T(3,1) = #{[0,0,0], [0,0,1], [0,0,2], [0,1,1], [0,1,2], [0,2,2], [1,1,1], [1,1,2], [1,2,2], [2,2,2]} = 10.
Triangle T(n,k) begins:
     1;
     3,     1;
    10,    16,      1;
    35,   155,     65,      1;
   126,  1246,   1506,    246,     1;
   462,  9142,  24017,  12117,   917,    1;
  1716, 63792, 315918, 349840, 88852, 3424,  1;
  ...
		

Crossrefs

First column is A001700(n-1).
Row sums give: A000312.

Programs

  • Maple
    b:= proc(n, l, k) option remember; local j;
          if n=0 then [1] else []; for j to k do zip((x, y)->x+y,
           %, [`if`(j b(n, 0, n)[]:
    seq(T(n), n=1..10);  # Alois P. Heinz, Jun 26 2013
  • Mathematica
    Table[Distribution[Map[Length,Map[Split[#,LessEqual[#1,#2]&]&,Tuples[Range[1,n],n]]]],{n,1,7}]//Grid (* Geoffrey Critzer, Jun 25 2013 *)
    zip[f_, x_, y_, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
    b[n_, l_, k_] := b[n, l, k] = Module[{j, pc}, If[n == 0, {1}, pc = {}; For[j = 1, j <= k, j++, pc = zip[Plus, pc, Join[If[jJean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
Showing 1-2 of 2 results.