cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108278 Numbers k such that k^2-1 and k^2+1 are semiprimes.

Original entry on oeis.org

12, 30, 42, 60, 102, 108, 198, 312, 462, 522, 600, 810, 828, 1020, 1050, 1062, 1278, 1452, 1488, 1872, 1950, 2028, 2130, 2142, 2340, 2790, 2802, 2970, 3000, 3120, 3252, 3300, 3330, 3672, 3930, 4020, 4092, 4230, 4548, 4800, 5280, 5640, 5652, 5658, 6198
Offset: 1

Views

Author

Hugo Pfoertner, May 30 2005

Keywords

Comments

Subsequence of A069062. - Michel Marcus, Jan 22 2016
Subsequence of A014574. - Robert Israel, Jan 24 2016

Examples

			a(1)=12 because 12^2-1=143=11*13 and 12^2+1=145=5*29 are both semiprimes.
		

Crossrefs

Cf. A001358 (semiprimes), A069062 (k^2-1 and k^2+1 have the same number of divisors), A014574 (average of twin prime pairs).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..7000] | IsSemiprime(n^2+1) and IsSemiprime(n^2-1) ]; // Vincenzo Librandi, Jan 22 2016
    
  • Maple
    filter:= n -> isprime(n+1) and isprime(n-1) and numtheory:-bigomega(n^2+1)=2:
    select(filter, [seq(i,i=2..1000, 2)]); # Robert Israel, Jan 24 2016
  • Mathematica
    Select[Range[7000], PrimeOmega[#^2 - 1] == PrimeOmega[#^2 + 1]== 2 &] (* Vincenzo Librandi, Jan 22 2016 *)
  • PARI
    isok(n) = (bigomega(n^2-1) == 2) && (bigomega(n^2+1) == 2); \\ Michel Marcus, Jan 22 2016