A108278 Numbers k such that k^2-1 and k^2+1 are semiprimes.
12, 30, 42, 60, 102, 108, 198, 312, 462, 522, 600, 810, 828, 1020, 1050, 1062, 1278, 1452, 1488, 1872, 1950, 2028, 2130, 2142, 2340, 2790, 2802, 2970, 3000, 3120, 3252, 3300, 3330, 3672, 3930, 4020, 4092, 4230, 4548, 4800, 5280, 5640, 5652, 5658, 6198
Offset: 1
Keywords
Examples
a(1)=12 because 12^2-1=143=11*13 and 12^2+1=145=5*29 are both semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..7000] | IsSemiprime(n^2+1) and IsSemiprime(n^2-1) ]; // Vincenzo Librandi, Jan 22 2016
-
Maple
filter:= n -> isprime(n+1) and isprime(n-1) and numtheory:-bigomega(n^2+1)=2: select(filter, [seq(i,i=2..1000, 2)]); # Robert Israel, Jan 24 2016
-
Mathematica
Select[Range[7000], PrimeOmega[#^2 - 1] == PrimeOmega[#^2 + 1]== 2 &] (* Vincenzo Librandi, Jan 22 2016 *)
-
PARI
isok(n) = (bigomega(n^2-1) == 2) && (bigomega(n^2+1) == 2); \\ Michel Marcus, Jan 22 2016
Comments