A108347 Numbers of the form (3^i)*(5^j)*(7^k), with i, j, k >= 0.
1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 49, 63, 75, 81, 105, 125, 135, 147, 175, 189, 225, 243, 245, 315, 343, 375, 405, 441, 525, 567, 625, 675, 729, 735, 875, 945, 1029, 1125, 1215, 1225, 1323, 1575, 1701, 1715, 1875, 2025, 2187, 2205, 2401, 2625, 2835, 3087
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Crossrefs
Programs
-
Magma
[n: n in [1..4000] | PrimeDivisors(n) subset [3,5,7]]; // Bruno Berselli, Sep 24 2012
-
Maple
with(numtheory): S := {}: for j to 3100 do if `subset`(factorset(j), {3, 5, 7}) then S := `union`(S, {j}) else end if end do: S; # Emeric Deutsch, May 21 2015 # alternative isA108347 := proc(n) if n = 1 then true; else return (numtheory[factorset](n) minus {3, 5, 7} = {} ); end if; end proc: A108347 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA108347(a) then return a; end if; end do: end if; end proc: seq(A108347(n),n=1..80); # R. J. Mathar, Jun 06 2024
-
Mathematica
With[{n = 3087}, Sort@ Flatten@ Table[3^i * 5^j * 7^k, {i, 0, Log[3, n]}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(3^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
-
Python
from sympy import integer_log def A108347(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): c -= integer_log(m//5**j,3)[0]+1 return c return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
Formula
Sum_{n>=1} 1/a(n) = (3*5*7)/((3-1)*(5-1)*(7-1)) = 35/16. - Amiram Eldar, Sep 22 2020
a(n) ~ exp((6*log(3)*log(5)*log(7)*n)^(1/3)) / sqrt(105). - Vaclav Kotesovec, Sep 23 2020
Comments