cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003593 Numbers of the form 3^i*5^j with i, j >= 0.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 375, 405, 625, 675, 729, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 5625, 6075, 6561, 9375, 10125, 10935, 15625, 16875, 18225, 19683, 28125, 30375, 32805, 46875, 50625, 54675, 59049
Offset: 1

Views

Author

Keywords

Comments

Odd 5-smooth numbers (A051037). - Reinhard Zumkeller, Sep 18 2005

Crossrefs

Cf. A033849, A112751-A112756, A143202, A022337 (list of j), A022336(list of i).
Cf. A264997 (partitions into), see also A264998. Cf. A108347 (odd 7-smooth).

Programs

  • GAP
    Filtered([1..60000],n->PowerMod(15,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003593 n = a003593_list !! (n-1)
    a003593_list = f (singleton 1) where
       f s = m : f (insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n: n in [1..60000] | PrimeDivisors(n) subset [3,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    isA003593 := proc(n)
        if n = 1 then
            true;
        else
            return (numtheory[factorset](n) minus {3, 5} = {} );
        end if;
    end proc:
    A003593 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA003593(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003593(n),n=1..30) ; # R. J. Mathar, Aug 04 2016
  • Mathematica
    fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* Bruno Berselli, Sep 24 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(5),N=5^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    is(n)=n==3^valuation(n,3)*5^valuation(n,5) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Python
    from sympy import integer_log
    def A003593(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - Benoit Cloitre, Jan 22 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - Amiram Eldar, Sep 22 2020

A147576 Numbers with exactly 3 distinct odd prime divisors {3,5,7}.

Original entry on oeis.org

105, 315, 525, 735, 945, 1575, 2205, 2625, 2835, 3675, 4725, 5145, 6615, 7875, 8505, 11025, 13125, 14175, 15435, 18375, 19845, 23625, 25515, 25725, 33075, 36015, 39375, 42525, 46305, 55125, 59535, 65625, 70875, 76545, 77175, 91875, 99225
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 16/35, AppendTo[a, x]], {x, 1, 100000}]; a
    Select[Range[100000],EulerPhi[#]/#==16/35&] (* Harvey P. Dale, Dec 01 2013 *)

Formula

a(n) = 105 * A108347(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/48. - Amiram Eldar, Dec 22 2020

A146205 Number of paths of the simple random walk on condition that the median applied to the partial sums S_0=0, S_1,...,S_n, n odd (n=15 in this example), is equal to half-integer values k+1/2, -[n/2]-1<=k<=[n/2].

Original entry on oeis.org

35, 35, 245, 245, 735, 735, 1225, 1225, 1225, 1225, 735, 735, 245, 245, 35, 35
Offset: 0

Views

Author

Christian Pfeifer (christian.pfeifer(AT)uibk.ac.at), Oct 28 2008, May 04 2010

Keywords

Comments

1) Closed-form expressions for sequences see Pfeifer (2010).
2) The median taken on partial sums of the simple random walk represents the market price in a simulation model wherein a single security among non-cooperating and asymetrically informed traders is traded (Pfeifer et al. 2009).
3) A146207=A146205+(0,A146206) see lemma 2 in Pfeifer (2010).

Examples

			All possible different paths (sequences of partial sums) in case of n=3:
{0,-1,-2,-3}; median=-1.5
{0,-1,-2,-1}; median=-1
{0,-1,0,-1}; median=-0.5
{0,-1,0,1}; median=0
{0,1,0,-1}; median=0
{0,1,0,1}; median=0.5
{0,1,2,1}; median=1
{0,1,2,3}; median=1.5
sequence of integers in case of n=3: 1,1,1,1
		

References

  • Pfeifer, C. (2010) Probability distribution of the median taken on partial sums of the simple random walk, Submitted to Stochastic Analysis and Applications

Crossrefs

A108513 Numbers of the form (2^i)*(5^j)*(7^k), with i, j, k >= 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 40, 49, 50, 56, 64, 70, 80, 98, 100, 112, 125, 128, 140, 160, 175, 196, 200, 224, 245, 250, 256, 280, 320, 343, 350, 392, 400, 448, 490, 500, 512, 560, 625, 640, 686, 700, 784, 800, 875, 896, 980, 1000, 1024, 1120
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jul 05 2005

Keywords

Comments

Numbers m | 70^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019

Crossrefs

Programs

  • Mathematica
    With[{n = 1120}, Sort@ Flatten@ Table[2^i * 5^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(2^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
  • PARI
    isok(n) = (n/(2^valuation(n,2)*5^valuation(n,5)*7^valuation(n,7)) == 1); \\ Michel Marcus, Oct 01 2013

Formula

Sum_{n>=1} 1/a(n) = (2*5*7)/((2-1)*(5-1)*(7-1)) = 35/12. - Amiram Eldar, Sep 23 2020
a(n) ~ exp((6*log(2)*log(5)*log(7)*n)^(1/3)) / sqrt(70). - Vaclav Kotesovec, Sep 23 2020

A342950 7-smooth numbers not divisible by 10: positive numbers whose prime divisors are all <= 7 but do not contain both 2 and 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18, 21, 24, 25, 27, 28, 32, 35, 36, 42, 45, 48, 49, 54, 56, 63, 64, 72, 75, 81, 84, 96, 98, 105, 108, 112, 125, 126, 128, 135, 144, 147, 162, 168, 175, 189, 192, 196, 216, 224, 225, 243, 245, 252, 256, 288, 294, 315, 324
Offset: 1

Views

Author

David A. Corneth, Mar 30 2021

Keywords

Examples

			12 is in the sequence as all of its prime divisors are <= 7 and 12 is not divisible by 10.
		

Crossrefs

Union of A108319 and A108347.
Intersection of A002473 and A067251.

Programs

  • Mathematica
    Select[Range@500,Max[First/@FactorInteger@#]<=7&&Mod[#,10]!=0&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
  • PARI
    is(n) = if(n%10 == 0, return(0)); forprime(p = 2, 7, n/=p^valuation(n, p)); n==1
    
  • Python
    A342950_list, n = [], 1
    while n < 10**9:
        if n % 10:
            m = n
            for p in (2,3,5,7):
                q, r = divmod(m,p)
                while r == 0:
                    m = q
                    q, r = divmod(m,p)
            if m == 1:
                A342950_list.append(n)
        n += 1 # Chai Wah Wu, Mar 31 2021
    
  • Python
    from sympy import integer_log
    def A342950(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,3)[0]+1):
                    c -= (k:=m//3**j).bit_length()+integer_log(k,5)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A342950gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    if not (p==2 and v%5==0) and not (p==5 and v&1==0):
                        heapq.heappush(h, v*p)
    print(list(islice(A342950gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

Sum_{n>=1} 1/a(n) = 63/16. - Amiram Eldar, Apr 01 2021

A194360 Triangle of divisors of 105^n, each number occurring once.

Original entry on oeis.org

1, 3, 5, 7, 15, 21, 35, 105, 9, 25, 45, 49, 63, 75, 147, 175, 225, 245, 315, 441, 525, 735, 1225, 1575, 2205, 3675, 11025, 27, 125, 135, 189, 343, 375, 675, 875, 945, 1029, 1125, 1323, 1715, 2625, 3087, 3375, 4725, 5145, 6125, 6615, 7875, 8575, 9261, 15435
Offset: 0

Views

Author

T. D. Noe, Sep 08 2011

Keywords

Comments

The length of row k is A003215(k), the centered hexagonal numbers, 3k^2 + 3k + 1.

Examples

			The triangle has rows beginning with 3^k and ending with 105^k:
1
3, 5, 7, 15, 21, 35, 105
9, 25, 45, 49, 63, 75, 147, 175, 225, 245, 315, 441, 525, 735, 1225, 1575, 2205, 3675, 11025
		

Crossrefs

Cf. A108347 (numbers of the form (3^i)*(5^j)*(7^k))

Programs

  • Mathematica
    Join[{{1}}, Table[Complement[Divisors[105^n], Divisors[105^(n-1)]], {n, 9}]]

A362012 Numbers k such that 1 < gcd(k, 105) < k and A007947(k) does not divide 105.

Original entry on oeis.org

6, 10, 12, 14, 18, 20, 24, 28, 30, 33, 36, 39, 40, 42, 48, 50, 51, 54, 55, 56, 57, 60, 65, 66, 69, 70, 72, 77, 78, 80, 84, 85, 87, 90, 91, 93, 95, 96, 98, 99, 100, 102, 108, 110, 111, 112, 114, 115, 117, 119, 120, 123, 126, 129, 130, 132, 133, 138, 140, 141, 144, 145, 150, 153, 154, 155, 156, 159, 160
Offset: 1

Views

Author

Michael De Vlieger, Apr 04 2023

Keywords

Comments

The asymptotic density of this sequence is 19/35. - Amiram Eldar, Dec 02 2023

Crossrefs

Programs

  • Mathematica
    With[{n = 105}, Select[Range[200], And[! CoprimeQ[#, n], ! Divisible[n, Times @@ FactorInteger[#][[All, 1]]]] & ] ]

Formula

This sequence is { N \ { A108347 U A236206 } }.

A241681 Numbers n such that the decimal digits of n are also the prime divisors of n.

Original entry on oeis.org

2, 3, 5, 7, 735, 2333772
Offset: 1

Views

Author

Michel Lagneau, Apr 27 2014

Keywords

Comments

The sequence is given for a(n) < 10^11.
No more terms <= 10^150. Terms are of the form 2^e2 * 3^e3 * 7^e7 or of the form 3^e3 * 5^e5 * 7^e7, for which no other number <= 10^150 than those listed is a term. - David A. Corneth, Sep 28 2019
No more terms <= 10^1000. - Michael S. Branicky, May 30 2025

Examples

			735 = 3*5*7^2 is in the sequence because the digits 7, 3 and 5 are also the prime divisors of 735.
		

Crossrefs

Subsequence of A046034.

Programs

  • Maple
    with(numtheory):nn:=1000000:for n from 1 to 10^11 do:lst:={}:x:=factorset(n):y:=convert(n,base,10):n1:=nops(x):n2:=nops(y): for j from 1 to n2 do:lst:=lst union {y[j]}:od:if x=lst then print(n):else fi:od:
Showing 1-8 of 8 results.