cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108362 Pair reversal of Fibonacci numbers.

Original entry on oeis.org

1, 0, 2, 1, 5, 3, 13, 8, 34, 21, 89, 55, 233, 144, 610, 377, 1597, 987, 4181, 2584, 10946, 6765, 28657, 17711, 75025, 46368, 196418, 121393, 514229, 317811, 1346269, 832040, 3524578, 2178309, 9227465, 5702887, 24157817, 14930352, 63245986, 39088169, 165580141
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

Here Fibonacci numbers are swapped in pairs, beginning with the pair (F(0),F(1)) changed in (F(1),F(0)). Similar to A135992, which starts switching F(1) and F(2). - Giuseppe Coppoletta, Mar 04 2015

Examples

			a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1,2]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2023
  • Mathematica
    Flatten[Reverse/@Partition[Fibonacci[Range[0,40]],2]] (* or *) LinearRecurrence[{0,3,0,-1},{1,0,2,1},40] (* Harvey P. Dale, Sep 09 2015 *)
    Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
  • PARI
    Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ Michel Marcus, Mar 04 2015
  • Sage
    [fibonacci(n+(-1)^n) for n in range(39)] # Giuseppe Coppoletta, Mar 04 2015
    

Formula

G.f.: (1-x^2+x^3)/(1-3x^2+x^4).
a(n) = 3*a(n-2) - a(n-4) for n>3 with a(0)=1, a(1)=0, a(2)=2, a(3)=1.
a(n) = (sqrt(5)/2-1/2)^n * ((-1)^n/2-sqrt(5)/10)+(sqrt(5)/2+1/2)^n * (sqrt(5)*(-1)^n/10+1/2).
From Giuseppe Coppoletta, Mar 04 2015: (Start)
a(2n) = A000045(2n+1), a(2n+1) = A000045(2n).
a(2n) = a(2n-1) + 2*a(2n-2), a(2n+1) = (a(2n) + a(2n-1))/2. (End)
a(n) = ((-1)^n * Fibonacci(n) + Lucas(n))/2. - Vladimir Reshetnikov, Sep 24 2016