A108362 Pair reversal of Fibonacci numbers.
1, 0, 2, 1, 5, 3, 13, 8, 34, 21, 89, 55, 233, 144, 610, 377, 1597, 987, 4181, 2584, 10946, 6765, 28657, 17711, 75025, 46368, 196418, 121393, 514229, 317811, 1346269, 832040, 3524578, 2178309, 9227465, 5702887, 24157817, 14930352, 63245986, 39088169, 165580141
Offset: 0
Examples
a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
Maple
a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1,2]: seq(a(n), n=0..40); # Alois P. Heinz, Sep 27 2023
-
Mathematica
Flatten[Reverse/@Partition[Fibonacci[Range[0,40]],2]] (* or *) LinearRecurrence[{0,3,0,-1},{1,0,2,1},40] (* Harvey P. Dale, Sep 09 2015 *) Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
-
PARI
Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ Michel Marcus, Mar 04 2015
-
Sage
[fibonacci(n+(-1)^n) for n in range(39)] # Giuseppe Coppoletta, Mar 04 2015
Formula
G.f.: (1-x^2+x^3)/(1-3x^2+x^4).
a(n) = 3*a(n-2) - a(n-4) for n>3 with a(0)=1, a(1)=0, a(2)=2, a(3)=1.
a(n) = (sqrt(5)/2-1/2)^n * ((-1)^n/2-sqrt(5)/10)+(sqrt(5)/2+1/2)^n * (sqrt(5)*(-1)^n/10+1/2).
From Giuseppe Coppoletta, Mar 04 2015: (Start)
a(2n) = a(2n-1) + 2*a(2n-2), a(2n+1) = (a(2n) + a(2n-1))/2. (End)
a(n) = ((-1)^n * Fibonacci(n) + Lucas(n))/2. - Vladimir Reshetnikov, Sep 24 2016
Comments