cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108397 Sums of rows of the triangle in A108396.

Original entry on oeis.org

0, 2, 10, 66, 692, 9780, 167982, 3362828, 76695880, 1961316270, 55555555610, 1726135607262, 58359930206844, 2132745542253872, 83767436069591302, 3518790190560477240, 157412216095654840592, 7471013615160978901626
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 02 2005

Keywords

Crossrefs

Programs

  • Haskell
    a108397 0 = 0
    a108397 1 = 2
    a108397 n = n * (n^(n+1) + n^2 - 2) `div` (2 * (n-1))
    -- Reinhard Zumkeller, Mar 31 2015

Formula

a(n) = n*(n^(n+1) + n^2 - 2) / (2*(n-1)) for n>1.

A108398 a(n) = n*(1 + n^n)/2.

Original entry on oeis.org

0, 1, 5, 42, 514, 7815, 139971, 2882404, 67108868, 1743392205, 50000000005, 1569214188366, 53496602689542, 1968688192849651, 77784047778906119, 3284204177856445320, 147573952589676412936, 7031542226033862495513
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 02 2005

Keywords

Crossrefs

Programs

Formula

a(n) = A108396(n,n).
E.g.f.: (exp(x) * x - LambertW(-x)/(1 + LambertW(-x))^3) / 2. - Vaclav Kotesovec, Jan 03 2019

A256512 n*(1+(2*n)^n).

Original entry on oeis.org

0, 3, 34, 651, 16388, 500005, 17915910, 737894535, 34359738376, 1785233613321, 102400000000010, 6427501315524619, 438244169232678924, 32254987351648575501, 2548827677619195478030, 215233605000000000000015, 19342813113834066795298832
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 31 2015

Keywords

Comments

a(n) = A108396(2*n,n): central terms of the triangle A108396.

Crossrefs

Programs

  • Haskell
    a256512 n = n * (1 + (2 * n) ^ n)
  • Mathematica
    Join[{0},Table[n(1+(2n)^n),{n,20}]] (* Harvey P. Dale, Aug 05 2021 *)
Showing 1-3 of 3 results.