A108412 Expansion of (1 + x + x^2)/(1 - 4x^2 + x^4).
1, 1, 5, 4, 19, 15, 71, 56, 265, 209, 989, 780, 3691, 2911, 13775, 10864, 51409, 40545, 191861, 151316, 716035, 564719, 2672279, 2107560, 9973081, 7865521, 37220045, 29354524, 138907099, 109552575, 518408351, 408855776, 1934726305
Offset: 0
Examples
G.f. = 1 + x + 5*x^2 + 4*x^3 + 19*x^4 + 15*x^5 + 71*x^6 + 56*x^7 + ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- P. Bala, Notes on 2-periodic continued fractions and Lehmer sequences
- Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
- Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
- E. W. Weisstein, MathWorld: Lehmer Number
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
Programs
-
Maple
a := proc (n) if `mod`(n, 2) = 1 then 1/sqrt(2)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) else 1/sqrt(12)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) end if; end proc: seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
-
Mathematica
CoefficientList[Series[(1+x+x^2)/(1-4x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,4,0,-1},{1,1,5,4},40] (* Harvey P. Dale, Nov 15 2012 *)
-
PARI
{a(n) = my( w = quadgen(24)); simplify( polchebyshev( n, 2, w/2) / if( n%2, w, 1))}; /* Michael Somos, Feb 10 2015 */
Formula
a(0)=a(1)=1, a(2)=5, a(n)a(n+3) - a(n+1)a(n+2) = -1.
a(0)=1, a(1)=1, a(2)=5, a(3)=4, a(n) = 4*a(n-2)-a(n-4). - Harvey P. Dale, Nov 15 2012
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = (1/2)*(sqrt(6) + sqrt(2)) (A188887) and beta = (1/2)*(sqrt(6) - sqrt(2)) (A101263). Equivalently, a(n) = U(n-1,sqrt(6)/2) for n odd and a(n) = (1/sqrt(6))*U(n-1,sqrt(6)/2) for n even, where U(n,x) is the Chebyshev polynomial of the second kind. - Peter Bala, Apr 18 2014
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Feb 10 2015
Comments