A108418 Primes with at least one of each odd digit and no even digits.
13597, 13759, 15739, 15937, 15973, 17359, 17539, 19753, 31957, 37159, 37591, 37951, 39157, 51973, 53197, 53719, 53791, 53917, 57139, 57193, 71359, 71593, 73951, 75193, 75391, 75913, 75931, 79153, 79531, 91573, 91753, 95317, 95713, 95731
Offset: 1
Links
- Georg Fischer, Table of n, a(n) for n = 1..3000 [recomputed Jul 08 2022; first 390 terms from Carmine Suriano]
Crossrefs
Cf. A030096 (Primes whose digits are all odd), A050288 (Pandigital primes), A108386 (Primes p such that p's set of distinct digits is {1, 3, 7, 9}).
Cf. A232447 (even digits are allowable). - Zak Seidov, Nov 24 2013
Programs
-
Mathematica
Select[Table[Prime[n],{n,10000}],!ContainsAny[IntegerDigits[#],{0,2,4,6,8}]&&ContainsAll[IntegerDigits[#],{1,3,5,7,9}]&] (* James C. McMahon, Mar 05 2024 *)
-
Python
from sympy import isprime from itertools import count, islice, product def agen(): for d in count(5): for p in product("13579", repeat=d): if set(p) != set("13579"): continue t = int("".join(p)) if isprime(t): yield t print(list(islice(agen(), 40))) # Michael S. Branicky, Jul 08 2022
Extensions
Added missing last term with 5 different digits, Carmine Suriano, Jan 14 2011
Comments