cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108418 Primes with at least one of each odd digit and no even digits.

Original entry on oeis.org

13597, 13759, 15739, 15937, 15973, 17359, 17539, 19753, 31957, 37159, 37591, 37951, 39157, 51973, 53197, 53719, 53791, 53917, 57139, 57193, 71359, 71593, 73951, 75193, 75391, 75913, 75931, 79153, 79531, 91573, 91753, 95317, 95713, 95731
Offset: 1

Views

Author

Rick L. Shepherd, Jun 02 2005

Keywords

Comments

This is a subsequence of A030096.
No even digits are allowable. Otherwise the first missing terms would be 105379, 105397, 109357, 109537. - Zak Seidov, Nov 24 2013

Crossrefs

Cf. A030096 (Primes whose digits are all odd), A050288 (Pandigital primes), A108386 (Primes p such that p's set of distinct digits is {1, 3, 7, 9}).
Cf. A232447 (even digits are allowable). - Zak Seidov, Nov 24 2013

Programs

  • Mathematica
    Select[Table[Prime[n],{n,10000}],!ContainsAny[IntegerDigits[#],{0,2,4,6,8}]&&ContainsAll[IntegerDigits[#],{1,3,5,7,9}]&] (* James C. McMahon, Mar 05 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen():
        for d in count(5):
            for p in product("13579", repeat=d):
                if set(p) != set("13579"): continue
                t = int("".join(p))
                if isprime(t): yield t
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jul 08 2022

Extensions

Added missing last term with 5 different digits, Carmine Suriano, Jan 14 2011