A108421 Smallest number of ones needed to write in binary representation 2*n as sum of two primes.
2, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 5, 6, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 6, 5, 6, 7, 7, 7, 8, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 7, 8, 5, 5, 6, 6, 6, 6, 7, 5, 6, 6, 7, 8, 7, 7, 8, 6, 7, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 5, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 6, 5, 5, 6, 6, 6, 6, 7, 5, 6
Offset: 2
Examples
n=15: 2*15=30 and A002375(15)=3 with 30=7+23=11+19=13+17, 13+17 -> 1101+10001 needs a(15)=5 binary ones, whereas 7+23 -> 111+10111 and 11+19 -> 1011+10011 need more.
Links
Programs
-
Maple
N:= 200: # to get a(2)..a(N) Primes:= select(isprime, [seq(i,i=3..2*N-3,2)]): Ones:= map(t -> convert(convert(t,base,2),`+`), Primes): V:= Vector(N): V[2]:= 2: for i from 1 to nops(Primes) do p:= Primes[i]; for j from 1 to i do k:= (p+Primes[j])/2; if k > N then break fi; t:= Ones[i]+Ones[j]; if V[k] = 0 or t < V[k] then V[k]:= t fi od od: convert(V[2..N],list); # Robert Israel, Mar 25 2018
-
Mathematica
Min[#]&/@(Table[Total[Flatten[IntegerDigits[#,2]]]&/@Select[ IntegerPartitions[ 2*n,{2}],AllTrue[#,PrimeQ]&],{n,2,110}]) (* Harvey P. Dale, Jul 27 2020 *)
Comments