cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108424 Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.

Original entry on oeis.org

2, 6, 34, 238, 1858, 15510, 135490, 1223134, 11320066, 106830502, 1024144482, 9945711566, 97634828354, 967298498358, 9659274283650, 97119829841854, 982391779220482, 9990160542904134, 102074758837531810, 1047391288012377774, 10788532748880319298
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

These are the large nu-Schröder numbers with nu=NE(NEE)^(n-1). - Matias von Bell, Jun 02 2021

Examples

			a(2) = 6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
		

Crossrefs

Cf. A006318 (d = 2, signed version at d = 0), A027307 (d = 3), A144097 (d = 4), A260332 (d = 5, conjecturally), A363006 (d = 6).

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A+z*A^2: Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
    a:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1) fi end: seq(a(n),n=1..19);
    # Alternative:
    a := n -> 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
    seq(simplify(a(n)), n = 1..21); # Peter Luschny, Jun 14 2021
  • Mathematica
    Table[(n*2^n*Binomial[2*n,n]/((2n-1)*(n+1))) * Sum[(Binomial[n-1,j])^2/ (2^j * Binomial[n+j+1,j]), {j,0,n-1}], {n,1,20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

a(n) = A027307(n-1) + A032349(n).
G.f.: z*A+z*A^2, where A=1+z*A^2+z*A^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.
a(n) = (n*2^n*C(2*n, n)/((2n-1)(n+1))) * Sum_{j=0..n-1} (C(n-1, j))^2 / (2^j*C(n+j+1,j)).
Recurrence: n*(2*n-1)*a(n) = 3*(6*n^2-10*n+3)*a(n-1) + (46*n^2-227*n+279)*a(n-2) + 2*(n-3)*(2*n-7)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(30*sqrt(5) - 50)*((11 + 5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{i=0..n} (2*n+i-2)!/((n-i)!*(n+i-1)!*i!), n>0. - Vladimir Kruchinin, Feb 16 2013
From Matias von Bell, Jun 02 2021: (Start)
a(n) = 2*Sum_{i>=0} (1/n)*binomial(2*n-2,i)*binomial(3*n-2-i,2*n-1).
a(n) = 2*A344553(n). (End)
a(n) = 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1) / n. - Peter Luschny, Jun 14 2021
From Peter Bala, Jun 17 2023: (Start)
a(n) = (-1)^(n+1) * (1/((d-1)*n + 1))*Sum_{i = 0..n} binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i), with d = -1.
P-recursive: n*(2*n - 1)*(5*n - 8)*a(n) = (110*n^3 - 396*n^2 + 445*n - 150)*a(n-1) + (n - 2)*(2*n - 5)*(5*n - 3)*a(n-2) with a(1) = 2 and a(2) = 6.
The g.f. A(x) = 2*x + 6*x^2 + 34*x^3 + .... Then 1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 66*x^3 + .. is the g.f. of A027307.
(1/x) * the series reversion of x*(1 - A(x)) = 1 + 2*x + 14*x^2 + 134*x^3 + ... is the g.f. of A144097.
(1/x) * the series reversion of x/(1 - A(x)) = 1 - 2*x - 2*x^2 - 6*x^3 - 22*x^4 - 90*x^5 - ... = 1 - x - x*S(x), where S(x) is the g.f. of A006318. (End)