cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108441 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having k U=(1,2) steps among the steps leading to the first d step.

Original entry on oeis.org

1, 1, 1, 3, 6, 1, 15, 39, 11, 1, 97, 284, 100, 16, 1, 721, 2249, 888, 186, 21, 1, 5827, 18890, 7977, 1952, 297, 26, 1, 49759, 165519, 72991, 19731, 3601, 433, 31, 1, 441729, 1496696, 680096, 196864, 40586, 5960, 594, 36, 1, 4035937, 13865297, 6439656
Offset: 0

Views

Author

Emeric Deutsch, Jun 08 2005

Keywords

Examples

			T(2,1)=6 because we have uUddd, Uddud, UddUdd, Ududd, UdUddd and Uuddd.
Triangle begins:
1;
1,1;
3,6,1;
15,39,11,1;
97,284,100,16,1;
		

Crossrefs

Row sums yield A027307. Column 0 yields A108442.

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-z*A-t*z*A^2): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y-1, false)+b(x-1, y+2, t)*
          `if`(t, z, 1)+b(x-2, y+1, t))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(3*n, 0, true)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y<0 || y>x, 0, If[x==0, 1, b[x-1, y - 1, False] + b[x-1, y+2, t]*If[t, z, 1] + b[x-2, y+1, t]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][ b[3*n, 0, True]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: G(t, z)=1/(1-zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

A110682 A convolution triangle of numbers based on A027307.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 66, 24, 6, 1, 498, 172, 42, 8, 1, 4066, 1360, 326, 64, 10, 1, 34970, 11444, 2706, 536, 90, 12, 1, 312066, 100520, 23526, 4672, 810, 120, 14, 1, 2862562, 911068, 211546, 42024, 7410, 1156, 154, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 15 2005

Keywords

Comments

Triangle T(n,k) for A(x)^k = Sum_{n>=k} T(n,k)*x^n, where o.g.f. A(x) satisfies A(x) = (1+x*A(x)^2)/(1-x*A(x)^2). - Vladimir Kruchinin, Mar 16 2011

Crossrefs

Columns: A027307, A032349, A033296.

Programs

  • Mathematica
    T[n_, k_] := (k/(2*n - k))*Sum[Binomial[2*n - k, n - k - j]*Binomial[2*n - k + j - 1, 2*n - k - 1], {j, 0, n - k}]; Table[T[n, k], {n, 0, 25}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 05 2017 *)
  • PARI
    for(n=0,25, for(k=1,n, print1((k/(2*n-k))*sum(i=0,n-k, binomial(2*n-k,n-k-i)*binomial(2*n-k+i-1,2*n-k-1)), ", "))) \\ G. C. Greubel, Sep 05 2017

Formula

T(0, 0) = 1; T(n, k) = 0 if k<0 or if k>n; T(n, k) = Sum_{j, j>=0} T(n-1, k-1+j)*A006318(j).
Sum_{k, k>=0} T(n, k) = A108442(n+1).
T(n,k) = k/(2*n-k)*Sum_{i=0,n-k} binomial(2*n-k,n-k-i)*binomial(2*n-k+i-1,2*n-k-1), n >= k > 0. - Vladimir Kruchinin, Mar 16 2011
Showing 1-2 of 2 results.