A108478 Diagonal sums of number triangle A108477.
1, 1, 2, 14, 43, 127, 468, 1596, 5253, 17917, 60918, 205194, 694287, 2351611, 7951336, 26894840, 91004105, 307854073, 1041410602, 3523170438, 11918842803, 40320750711, 136404504124, 461454010164, 1561085306061, 5281113937653
Offset: 0
Programs
-
Maple
A108478:=n->add(add(binomial(2*(n-2*k),j)*binomial(2*k,j)*2^j, j=0..n-k), k=0..floor(n/2)): seq(A108478(n), n=0..30); # Wesley Ivan Hurt, Sep 26 2014
-
Mathematica
Table[Sum[Sum[Binomial[2 (n - 2 k), j]*Binomial[2 k, j]*2^j, {j, 0, n - k}], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Sep 26 2014 *)
-
PARI
a(n) = sum(k=0, n\2, sum(j=0, n-k, binomial(2*(n-2*k), j)*binomial(2*k, j)*2^j)); \\ Michel Marcus, Sep 26 2014
Formula
a(n) = sum_{k=0..floor(n/2)} ( sum_{j=0..n-k} C(2(n-2k), j)*C(2k, j)*2^j ).
Empirical g.f.: -(3*x^3+x^2+x-1) / ((x^3-3*x^2-x-1)*(x^3+x^2+3*x-1)). - Colin Barker, Sep 26 2014
Comments